(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPERID: 2044 Roll No.

\square
B.Tech
(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 NETWORK ANALYSIS \& SYNTHESIS

Time: 3 Hours]
[Total Marks : 100
Note : Attempt all questions. All questions carry equal marks. In case of numerical problems make suitable assumptions wherever required.
1 Attempt any four parts :
$5 \times 4=20$
(a) Define tree, co-tree, twig, link and incidence matrix taking a suitable example.
(b) Explain the fundamental cut-set matrix taking a suitable example.
(c) Derive the relationship between fundamental tieset matrix, impedance matrix, loop current matrix and loop emf matrix.
(d) For the network shown in the fig. 1 below, write down the tie-set matrix.

Fig. 1
(e) Explain the concept of duality. What relationship has duality with the incidence matrix ?
(f) Find the dual of the following network shown in fig. 2.

Fig. 2
2 Attempt any four parts:
(a) Find the current in the $(1+\mathrm{j} 1) \Omega$ resistor across A, B of the network shown in fig. 3 using thevenins theorem.

Fig. 3
(b) Obtain the Thevenin's equivalent circuit for the network shown in fig. 4.

Fig. 4
(c) Verify Tellegen's theorem for the network shown in fig. 5.

IV.ig. 5
(d) Find the power delivered by the two sources to the circuit shown in fig. 6.

Fig. 6
(e) State and prove the Maximum power transfer theorem for AC circuits.
(f) State and prove Millman's theorem.

3 Answer any two parts
$10 \times 2=20$
(a) Transform current $l(s)$ of a network is given by $I(s)=\frac{2 s}{(s+1)(s+2)}$. Plot the poles and zeros in the s-plane and hence obtain time-domain response of it.
(b) Explain the complete procedure for making a Bode Plot for different types of transfer function.
(c) Show that the voltage transfer function of the network shown in fig. 7 can be written as
$\frac{V_{2}(S)}{V_{1}(S)}=\frac{1}{R_{1} C_{2}} \frac{S}{S^{2}+\frac{R_{1} C_{1}+R_{2}\left(C_{1}+C_{2}\right)}{R_{1} R_{2} C_{1} C_{2}}+\frac{1}{R_{1} R_{2} C_{1} C_{2}}}$.

Fig. 7

Attempt any two parts
(a) Explain the concepts of reciprocity and symmetry. Derive the above conditions for h and $A B C D$ parameters.
(b)

Fig. 8
Find the Y and Z parameters of the network in fig. 8 .
(c) Find the h parameters of the network shown in fig. 9 .

Fig. 9
5 Answer any two parts : $10 \times 2=20$
(a) Define positive real function and mention its properties. Also write the properties of RL, RC and LC driving point functions.
(b) Synthesize the Foster I and II forms of realization of the following driving point function

$$
Z_{0}(s)=\frac{2 s^{2}+12 s+16}{s^{2}+4 s+3}
$$

(c) Design constant -K low pass T and π section filters to be terminated in 600Ω having cut-off frequency 3 kHz .

