Printed Pages : 4				EME303
(Following Paper	ID and Roll No.	to be filled	in your An	swer Book)
PAPER ID: 0430	Roll No.			
······································	B.Te	ch		

(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 THERMODYNAMICS

Time : 2 Hours]

The start

[Total Marks : 50

- Note : (1) Answer all questions.
 - (2) Use of steam tables and Mollier chart is permitted.
 - (3) Make suitable assumptions in case of missing data, if any and state the assumption made.

Answer any four of the following :

- (a) Briefly describe the 'principle of corresponding states' and 'quasi static process'.
- (b) State Zeroth law of thermodynamics and its application.

If temperature of a body is 26°C, then find its temperature in °K and °F.

- (c) Steam at 9 MPa and 600°C passes through a throttling process such that the pressure is suddenly dropped to 0.4 MPa. Find the expected temperature after throttling.

[Contd...

3.5×4

「「

- (d) Air at 420°C and 7 kPa enters a nozzle with 400 m/s velocity and leaves at temperature of 255°C. For specific heat of air (R=2875/kg.K) at constant pressure as 1 kJ/kg.K determine the air velocity and mass per unit area at the exit of nozzle. What is first law of thermodynamics for a closed system?
- (e) Enlist the limitations of First law of thermodynamics.
- (f) Explain the 'free expansion' and 'hyperbolic process.'

2 Answer any two of the following : $6 \times 2=12$

- (a) (i) A Carnot engine operates between 4 temperatures T_1 and T_2 with efficiency η_1 and other Carnot engine operates between temperatures T_2 and T_3 with efficiency η_2 . Show that the Carnot engine operating between temperatures T_1 and T_3 will have efficiency given as $(\eta_1 + \eta_2 - \eta_1 \cdot \eta_2)$.
 - (ii) Explain the perpetual motion machine of 2 second kind and its relevance.
- (b) Three reversible engines operate in series between two heat reservoirs of extremities being at 1000 K and 300 K. Considering the work produced by each engine to be in the proportion of 5:4:3 determine temperature of intermediate reservoirs.

2

JJ-0430]

[Contd.

(c) Explain Carnot theorem and show that no heat 6 engine working between two fixed temperatures can have efficiency greater than that of a reversible engine working between same temperatures.

Answer any two of the following : 6×2=12
(a) Determine the change in entropy in each 6 processes for the definite quantity of air following three processes in thermodynamic cycle and also show them on p-V and T-s diagram.

Process 1-2 : Constant volume heating from 1 bar, 288 K and 0.02 m³ to 4.2 bar.

Process 2-3 : Constant pressure cooling. Process 3-1 : Isothermal heating upto initial state.

Take C_p , air = 1 kJ/kgK.

(b) Show that the change of entropy of a perfect 6 gas undergoing change of state from 1 to 2 can be given as

$$s_2 - s_1 = m \left[c_v \ln \frac{p_2}{p_1} + c_p \ln \frac{v_2}{v_1} \right]$$

- (c) (i) Determine the second law efficiency of an 3 engine having efficiency of 35% operating between reservoirs of 600 K and 300 K.
 - (ii) Describe the 'Helmholtz function' and 3'Gibbs function' briefly.
- 430] 3

[Contd...

AND A

- 4 Answer any two of the following :
 - (a) 2 kg of steam at pressure of 10 bar, 225°C
 6 undergoes a reversible polytropic expansion following index 1.2 upto pressure of 1 bar. Determine the final temperature, work done and heat transfer.
 - (b) Explain the working of a two stroke SI engine 6 giving neat sketches and differentiate between two stroke and four stroke spark ignition engine.
 - Explain simple Rankine cycle with neat schematic diagram and also show different processes involved in it on T-s dioagram, h-s diagram and p-v diagram.

6

 $6 \times 2 = 12$

(c)