rillited rages-5		al generation	1110	HINEL.	1.1		IAN	502
(Following Paper ID	and Roll No	. to b	e fille	ed in	your	Ansv	ver B	look)
PAPER ID : 9967	Roll No.		390	20bs	57			

B.Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2010-11 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Time : 3 Hours

inted Dages

E

Total Marks: 100

16201

Note : Attempt ALL questions.

1. Attempt any four parts of the following :- (5×4=20)

- (a) Find the absolute, relative and percentage errors if x is rounded-off to three decimal digits where x = 0.005998.
- (b) Determine the number of terms of the exponential series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

such that their sum gives the value of e^x correct to six decimal places for $0 \le x \le 1$.

- (c) Use Bisection method to obtain the smallest positive root of the equation $x^3 5x + 1 = 0$. Perform five iterations.
- (d) Find the real root of the equation $2x \log_{10} x = 7$ correct to four decimal places, using Newton-Raphson method.

- Find a real root of the equation $x^3 + x 1 = 0$ using identition method.
- (f) Find the number of real and complex roots of the polynomial equation $x^4 4x^3 + 3x^2 + 4x 4 = 0$ using Sturm sequence.
- Attempt any four parts of the following :- (5×4=20)
 - (a) Find the missing terms of the following data :

X	1-0	1.5	2.0	2.5	3.0	3.5	4.0
f(x)	6		10	20		15	5

(b) Use Newton-Gregory formula to compute y at x = 24 from the following data :

X	» 21 ··	25	29	33	37
у	18.4	17.8	17.1	16.3	15.5

(c) Prove that

$$\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$$

where symbols have their usual meaning for finite difference.

(d) Use Stirling formula to find y₃₅, given

$$y_{20} = 512, y_{30} = 439, y_{40} = 346 \text{ and } y_{50} = 243.$$

 (e) Use Lagrange's interpolation formula to compute f(5.5) from the following data :

х	0	1	4	5	6
f(x)	1	14	15	6	3

302/VEQ-15156

2

- (f) The function y = f(x) is given at the points (7, 3), (8, 1),
 (9, 1) and (10, 9). Find the value of y for x = 9.5 using Newton's divided difference formula.
- 3. Attempt any two parts of the following :-- (10×2=20)
 - (a) A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of the time 't' (seconds):

t	0	0.2	0-4	0-6	0.8	1.0	1.2
θ	0	0-12	0-49	1.12	2.02	3.20	4.67

Calculate the angular velocity and acceleration of the rod when t = 0.6 sec.

(b) Derive the formula for Simpson's $\frac{1}{3}$ rule. The velocity

v of a particle at distance s from a point on its path is given by the table below :

s (meter)		and the state		1000			
v(m/sec)	47	58	64	65	61	52	38

Estimate the time taken to travel 60 meters.

- (c) Evaluate $\int_{4}^{5\cdot 2} lnx dx$ by Simpson's $\frac{3}{8}$ rule and Weddle's rule.
- 4. Attempt any two parts of the the following :--- (10×2=20)
 - (a) (i) Solve

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y^2 \,, \quad y(0) = 0$$

to get y(0.2) by Taylor's series method.

TAS302/VEQ-15156

[Turn Over

- (ii) If $\frac{dy}{dx} = 1 + y^2$, y(0) = 1, find y(0.4) by using Euler's method. Take h = 0.2.
- (b) Use Runge-Kutta method of fourth order to solve the following differential equation in the interval [0, 0, 4] :

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y+x}{y-x}, \ y(0) = 1.$$

Take h = 0.2.

(c) Given that
$$\frac{dy}{dx} = 1 + y^2$$
; and

$$y(0.6) = 0.6841, y(0.4) = 0.4228,$$

$$y(0.2) = 0.2027, y(0) = 0.$$

Find y(-0.2) using Milne's predictor-corrector method.

5. Attempt any two parts of the following :-- (10×2=20)

(a) Find the two regression lines from the following data :

x	1	2	3	4	5	6	7
у	9	8	10	12	11	13	14

Also, estimate the value of y when x = 6.5.

(b) In a trivariate distribution, the following data have been obtained :

X ₁	1	2	3	4
X ₂	0	1	2	3
X ₃	12	18	24	30

TAS302/VEQ-15156

Find :

- (i) The regression equation of X_3 on X_1 and X_2 .
- (ii) Estimate X₃ when $X_1 = 3.5$ and $X_2 = 1.5$.
- (c) In a blade manufacturing factory 1000 blades are examined daily. Following information shows number of defective blades obtained there. Draw the np-chart and give your findings :

Data	No. of defective
Date	blades
1	9
2	10
3	12
4	8
5	7
6	15
7	10
8	12
9	10
10	8
11	7
12	13
13	14
14	15
15	16