(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 9967 Roll No.

B.Tech.
(SEM. III) ODD SEMESTER THEORY EXAMINATION 2010-11
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Time : 3 Hours
Total Marks : 100
Note: Attempt ALL questions.

1. Attempt any four parts of the following :-
($5 \times 4=20$)
(a) Find the absolute, relative and percentage errors if x is rounded-off to three decimal digits where $\mathrm{x}=0.005998$.
(b) Determine the number of terms of the exponential series

$$
\mathrm{e}^{\mathrm{x}}=1+x+\frac{\mathrm{x}^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots
$$

such that their sum gives the value of e^{x} correct to six decimal places for $0 \leq x \leq 1$.
(c) Use Bisection method to obtain the smallest positive root of the equation $\mathrm{x}^{3}-5 \mathrm{x}+1=0$. Perform five iterations.
(d) Find the real root of the equation $2 \mathrm{x}-\log _{10} \mathrm{x}=7$ correct to four decimal places, using Newton-Raphson method.
e) Find a real root of the equation $x^{3}+x-1=0$ using iteration method.
(f) Find the number of real and complex roots polynomial equation $x^{4}-4 x^{3}+3 x^{2}+4 x-4=0$ using Sturm sequence
2. Attempt any four parts of the following :-
(a) Find the missing terms of the following data:

x	1.0	1.5	$2 \cdot 0$	$2 \cdot 5$	3.0	3.5	4.0
$f(x)$	6	-	10	20	-	15	5

(b) Use Newton-Gregory formula to compute y at $\mathrm{x}=24$ ffom the following data :

x	21	25	29	33	37
y	$18 \cdot 4$	$17 \cdot 8$	$17 \cdot 1$	$16 \cdot 3$	$15 \cdot 5$

(c) Prove that

$$
\Delta=\frac{1}{2} \delta^{2}+\delta \sqrt{1+\frac{\delta^{2}}{4}}
$$

where symbols have their usual meaning for finite difference.
(d) Use Stirling formula to find \mathbf{y}_{35}, given

$$
\mathrm{y}_{20}=512, \mathrm{y}_{30}=439, \mathrm{y}_{40}=346 \text { and } \mathrm{y}_{50}=243
$$

(e) Use Lagrange's interpolation formula to compute $f(5 \cdot 5)$ from the following data :

x	0	1	4	5	6
$f(x)$	1	14	15	6	3

(f) The function $y=f(x)$ is given at the points $(7,3),(8,1)$, $(9,1)$ and $(10,9)$. Find the value of y for $x=9 \cdot 5$ using Newton's divided difference formula.
3. Attempt any two parts of the following :$(10 \times 2=20)$
(a) A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of the time ' t ' (seconds) :

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity and acceleration of the rod when $\mathrm{t}=0.6 \mathrm{sec}$.
(b) Derive the formula for Simpson's $\frac{1}{3}$ rule. The velocity v of a particle at distance s from a point on its path is given by the table below :

s (meter)	0	10	20	30	40	50	60
$\mathrm{v}(\mathrm{m} / \mathrm{sec})$	47	58	64	65	61	52	38

Estimate the time taken to travel 60 meters.
(c) Evaluate $\int_{4}^{5 \cdot 2} \ell n x d x$ by Simpson's $\frac{3}{8}$ rule and Weddle's rule.
4. Attempt any two parts of the the following :- $\quad(\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0})$
(a) (i) Solve

$$
\frac{d y}{d x}=x+y^{2}, \quad y(0)=0
$$

to get $y(0.2)$ by Taylor's series method.
(ii) If $\frac{d y}{d x}=1+y^{2}, y(0)=1$, find $y(0 \cdot 4)$ by using Euler's method. Take $\mathrm{h}=0.2$.
(b) Use Runge-Kutta method of fourth order to solve the following differential equation in the interval $[0,0,4]$:

$$
\frac{d y}{d x}=\frac{y+x}{y-x}, y(0)=1 .
$$

Take $\mathrm{h}=0.2$.
(c) Given that $\frac{\mathrm{dy}}{\mathrm{dx}}=1+\mathrm{y}^{2}$; and

$$
\begin{aligned}
& y(0.6)=0.6841, y(0.4)=0.4228 \\
& y(0.2)=0.2027, y(0)=0 .
\end{aligned}
$$

Find $y(-0 \cdot 2)$ using Milne's predictor-corrector method.
5. Attempt any two parts of the following :($10 \times 2=20$)
(a) Find the two regression lines from the following data:

x	1	2	3	4	5	6	7
y	9	8	10	12	11	13	14

Also, estimate the value of y when $\mathrm{x}=6.5$.
(b) In a trivariate distribution, the following data have been obtained :

X_{1}	1	2	3	4
X_{2}	0	1	2	3
X_{3}	12	18	24	30

Find:
(i) The regression equation of X_{3} on X_{1} and X_{2}.
(ii) Estimate X_{3} when $X_{1}=3.5$ and $X_{2}=1.5$.
(c) In a blade manufacturing factory 1000 blades are examined daily. Following information shows number of defective blades obtained there. Draw the np-chart and give your findings:

Date	No. of defective blades
1	9
2	10
3	12
4	8
5	7
6	15
7	10
8	12
9	10
10	8
11	7
12	13
13	14
14	15
15	16

