(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 0111 Roll No.

B. Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2010-11

DISCRETE MATHEMATICAL STRUCTURES

Time: 3 Hours

Total Marks: 100

Note: (1) Attempt all questions.

(2) All questions carry equal marks.

- 1. Attempt any four parts of the following:— (5×4=20)
 - (a) Consider a universal set $U = \{x \mid x \text{ is an integer}\}$. Assume that $X = \{x \mid x \text{ is a positive integer}\}$, $Z = \{x \mid x \text{ is an even integer}\}$ and $Y = \{x \mid x \text{ is a negative odd integer}\}$. Find the following:
 - (i) X Y
 - (ii) $X^{C} Y$, where X^{C} is the complement of set X.
 - (b) Consider a set $S_K = \{1, 2,, K\}$. Find

$$\bigcup_{k=1}^{n} S_{k} \text{ and } \bigcup_{k=1}^{\infty} S_{k}.$$

(c) Let R be a relation on N, the set of natural numbers such that

$$R = \{(x, y) \mid 2x + 3y \text{ and } x, y \in N\}.$$

Find:

- (i) The domain and codomain of R.
- (ii) R-1.

- (d) Show that the functions $f(x) = x^3 + 1$ and $g(x) = (x 1)^{1/3}$ are converse to each other.
- (e) Prove that if f is a Fibonacci number then

$$f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

for all $n \in N$, the set of natural numbers.

- (f) Let f: X → Y and X = Y = R, the set of real number. Find f⁻¹ if
 - (i) $f(x) = x^2$
 - (ii) f(x) = (2x 1)/5.
- 2. Attempt any two parts of the following:— (10×2=20)
 - (a) Let $G = \{1, -1, i, -i\}$ with the binary operation multiplication be an algebraic structure, where $i = \sqrt{-1}$.
 - (i) Determine whether G is an Abelian.
 - (ii) If G is a cyclic group, then determine the generator of G.
 - (b) Let G = (Z², +) be a group and let H be a subgroup of G, where H = {(x, y) | x = y}. Find the left cosets of H in G. Here Z is the set of integers.
 - (c) Prove that (R, +, *) is a ring with zero divisors, where R is 2×2 matrix and + and * are usual addition and multiplication operations.

- 3. Attempt any two parts of the following:— (10×2=20)
 - (a) Let (L_1, \le) and (L_2, \le) be lattices as shown below. Then draw the Hasse diagram for the lattice (L, \le) , where $L = L_1 \times L_2$.

(b) (i) Simplify the following Boolean function using K-map:

$$f(x, y, z) = \Sigma(0, 2, 3, 7).$$

- (ii) How are sequential circuits different from combinational circuits?
- (c) Describe the Boolean duality principle. Write the dual of each Boolean equations:

(i)
$$x + \overline{x}y = x + y$$

(ii)
$$(x \cdot 1)(0 + \overline{x}) = 0$$
.

- 4. Attempt any two parts of the following:— (10×2=20)
 - (a) (i) Show that the statements:

$$P \rightarrow Q$$
 and $Q \rightarrow P$ are equivalent.

(ii) State the contrapositive and converse statement of the following statement:

"If the triangle is equilateral, then it is equiangular."

(b) Show that premises:

$$P \rightarrow Q, R \rightarrow S, \neg Q \rightarrow \neg S, \neg \neg P.$$

and $(T \wedge U) \rightarrow R$ imply the conclusion $T(T \wedge U)$.

- (c) What do the following expressions mean?
 - (i) $(\forall x) (x^2 \ge x)$
 - (ii) $(\forall x) < 0 (x^2 > 0)$
 - (iii) $(\exists x) \neq 0 (x^2 \neq 0)$.

Here the domain in each case consists of the real numbers.

- 5. Attempt any four parts of the following:— (5×4=20)
 - (a) Determine the value of each of these prefix expressions:
 - (i) -*2/933
 - (ii) $+-*335/\uparrow 232$.
 - (b) For which values of n do these graphs have an Euler cycle:
 - (i) K_n , a complete graph of n-vertices.
 - (ii) C_x, a cycle of n-vertices.
 - (c) Solve the recurrence relation:

$$T(n) = 64T(n/4) + n^6$$
 where

 $n \ge 4$ and a power of 4.

(d) Solve the recurrence relation:

$$a_{n} = 3a_{n-1} + 4^{n-1}$$

for $n \ge 0$ and $a_0 = 1$.

- (e) Determine the number of bit strings of length 10 that either begin with three 0's or end with two 1's.
- (f) How many different rooms are needed to assign 500 classes, if there are 45 different time periods during in the university time table that are available?