Printed Pages-3									EE	10	02
(Following Paper ID a	nd Roll No.	to l	be f	ille	d in	yo	ur A	ns	wer	Bo	ok)
PAPER ID : 0323	Roll No.	24	4								

B. Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2010-11

DIGITAL ELECTRONICS

Time : 3 Hours

Total Marks : 100

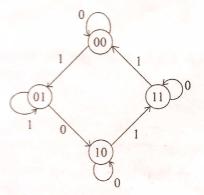
FECSOS

- Note: (1) Attempt all questions.
 - (2) All questions carry equal marks.
- 1. Attempt any four of the following :
 - (a) Convert the following decimal numbers to their binary equivalents :
 - (i) (83)₁₀
 - (ii) (79.515)₁₀
 - (iii) (109.125)₁₀
 - (b) Perform the following operations by using 2's complement method :
 - (i) 46 23
 - (ii) 21 42
 - (c) Perform the following subtractions of BCD numbers using 9's complement :
 - (i) 68 24
 - (ii) 24-29
 - (d) Explain with examples, how Hamming code is useful for detecting and correcting errors in digital data transmission.

EEC302/VEQ-15048

[Turn Over

(e) Convert the following Boolean function into standard SOP and express it in terms of minterms :


 $Y(A, B, C) = AB + AC + B\overline{C}.$

- (f) Minimize the following expression using K-map : $Y(A, B, C) = \Sigma(1, 2, 6, 7) + d(0, 5).$
- 2. Attempt any four of the following :
 - (a) Design a 8-bit BCD adder.
 - (b) Implement a 16:1 Multiplexer using 4:1 Multiplexers.
 - (c) Design a BCD to Excess-3 Code Converter.
 - (d) Design a full adder using NAND gates only.
 - (e) Design a combinational logic circuit with three input variables that will produce logic 1 output when more than one input variables are logic 1.
 - (f) Design a 2-bit comparator using logic gates.
- 3. Attempt any two of the following :
 - (a) What is race-around condition ? How does it get eliminated in Master-slave J-K flip flop ? Explain.
 - (b) Design and implement a Mod-6 synchronous counter using D-flip flop.
 - (c) Design an asynchronous sequential circuit with two inputs I_1 and I_2 , and one output, Z. Initially, both inputs are equal to 0. When I_1 changes from 0 to 1, Z becomes 1. When I_2 changes from 0 to 1, Z becomes 0. Otherwise, Z is 0. Realize the circuit using J-K flip flop.
- 4. Attempt any two of the following :
 - (a) Describe the differences between the following :
 - (i) PLA and PAL
 - (ii) Registered output PAL and GAL

Use logic diagrams for explanation.

EEC302/VEQ-15048

- (b) Write short notes on the following :
 - (i) Sequential and Random Access memories.
 - (ii) One and multi-dimensional selection arrangement of memories.
- (c) Draw an ASM chart for a modulo-6 counter with a reset input.
- 5. Attempt any two of the following :
 - (a) For the state diagram shown in figure, obtain the state table and design the circuit using minimum number of J-K FFs.

- (b) Differentiate synchronous and asynchronous sequential circuits. Explain the problem in asynchronous circuits.
- (c) What are the different types of hazards in asynchronous circuits ? Differentiate static-0 and static-1 hazards with waveform.