Printed Pages—4			EEC303
(Following Paper ID a	and Roll No. to be	e filled i	n your Answer Book)
PAPER ID : 0324	Roll No.		
	B. Tech.		
(SEM. III) ODD S	SEMESTER TH 2010-11	EORY	EXAMINATION
ELECTRO	DMAGNETIC	FIELD	THEORY
Time : 3 Hours			Total Marks : 100
	all questions. ations carry equal	marks.	
1. Attempt any for	ur of the followin	ig:	(5×4=20)
			those in the right list. than once or not at all.
(i) $\theta = \tau$	τ/4	(I)	Infinite plane
(ii) $\phi = 2$	$2\pi/3$	(II)	Semi infinite plane
(iii) $x = -$. ,	Circle
	$\theta = \pi/3, \phi = \pi/2$	(IV)	Straight line
(v) $\rho = 2$		(V)	Semi circle
(vi) $\rho = 3$	$\beta, \phi = 5\pi/3$	(VI)	Cone
(vii) $\rho = 1$,	(VII))Cylinder
(viii) $r = 4$		(VIII)Sphere
(ix) $r = 5$	$, \theta = \pi/3$	(IX)	Cube
		(X)	Point
(b) Express th	e vector field :		
$\vec{H} =$	$xy^2z\hat{a}_x + x^2yz\hat{a}_y$	$+ xyz^2 \hat{a}$	âz
in cylindri	cal and spherical	co-ordi	nates.
(c) Explain th	Explain the significance of Del operator.		
(d) Find the g	Find the gradient of the following scalar field :		
(i) $u = \rho$			
(ii) v = 1	Or $\sin^2 \theta \cos \phi$.		

1

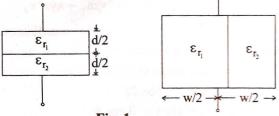
EEC303/VEQ-15049

[Turn Over

(e) Find the Laplacian of the answer of problem (d).

(f) Let $\vec{D} = 2\rho z^2 a_{\rho} + \rho \cos^2 \phi a_z$. Evaluate :

(i)
$$\vec{D} \cdot \vec{ds}$$
 and

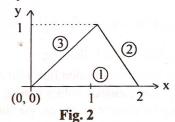

(ii)
$$\int_{V} \nabla \cdot D dV$$

over the region defined by $0 \le \rho \le 5, -1 \le z \le 1, 0 \le \phi \le 2\pi$.

- 2. Attempt any **four** of the following : (5×4=20)
 - (a) Explain and state Coulomb's law and its importance. Relate force with electric field intensity.
 - (b) Relate Electric field with Electric flux density. What is Gauss's law? Apply it to find out \vec{D} of infinite line charge.
 - (c) A circular disk of radius a is uniformly charged with $\rho_s c/m^2$. If the disk lies on the z = 0 plane with its axis along the z-axis show that at point (0, 0, h):

$$\vec{E} = \frac{\rho_s}{2\epsilon_0} \left\{ 1 - \frac{h}{[h^2 + a^2]^{1/2}} \right\} \hat{a}_z.$$

- (d) Derive the electric field intensity at a distance r from an electric dipole.
- (e) Explain the phenomenon of polarization in dielectric material. What is the significance of Linear, Isotropic and homogeneous dielectrics ?
- (f) Determine the capacitance of each of the capacitors in figure 1. Consider $\varepsilon_{r_1} = 4$, $\varepsilon_{r_2} = 6$, d = 2 mm, s = 20 cm².



EEC303/VEQ-15049

3. Attempt any two of the following: (10×2=20)

(a) (i) The conducting triangular loop in Fig. 2 carries a

current of 10 A. Find \vec{H} at (0, 0, 5) due to side 1 of the loop.

- (ii) State and prove Ampere's circuital law and derive Maxwell's equation from it.
- (b) Discuss and derive Magnetic scalar and vector potentials.

Given the magnetic vector potential $\vec{A} = -\rho^2 / 4 a_z$ wb/m, calculate the total magnetic flux crossing the surface :

 $\phi = \pi/2, 1 \le \rho \le 2 \text{ m}, 0 \le z \le 5 \text{ m}.$

(c) State and derive magnetic boundary conditions. Calculate the self inductance per unit length of an infinitely long solenoid.

4. Attempt any two of the following : (10×2=20)

- (a) State and write Maxwell's equation in integral and differential form. What do you mean by lossy Dielectric and derive the wave equation in lossy dielectric.
- (b) What is skin depth and discuss its significance. A lossy dielectric has an intrinsic impedance of $200 \angle 30^{\circ} \Omega$ at a particular frequency. If at that frequency the plane wave propagating through the dielectric has the magnetic field component :

$$\vec{H} = 10^{-\alpha x} \cos\left(wt - \frac{1}{2}x\right)\hat{a}_y A/m.$$

Find E and α . Determine Skin Depth also.

EEC303/VEQ-15049

3

(c) In free space $(z \le 0)$, a plane wave with :

 $\vec{H} = 10 \cos (10^8 t - \beta z) a_x mA/m$

is incident normally on a lossless medium ($\varepsilon = 2\varepsilon_0, \mu = 8 \mu_0$) in region $z \ge 0$. Determine the reflected wave \vec{H}_r, \vec{E}_r and the transmitted wave \vec{H}_t, \vec{E}_t .

5. Attempt any two of the following : $(10 \times 2 = 20)$

- (a) A 30 m long transmission line with $z_0 = 50 \Omega$ operating at 2 MHz is terminated with a load $z_L = 60 + j40 \Omega$. If the velocity of wave v = .6C on the line find the reflection coeff. Γ , the standing wave ratio, and the input impedance.
- (b) Explain the role of Smith Chart in measurement of various parameters in Transmission line.
- (c) Derive transmission line voltage and current equations. Discuss the concept of Distortionless and lossless line.