(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 9618 Roll No. $\square$

## B.Tech.

## (SEM. III) ODD SEMESTER THEORY <br> EXAMINATION 2010-11 <br> MATHEMATICS-III

Time : 3 Hours
Note : (1) Attempt ALL questions.
(2) Provide Chi-square table.

1. Attempt any four parts of the following :( $5 \times 4=20$ )
(a) An electrostatic field in the $x y$-plane is given by the potential function $\varphi=3 x^{2} y-y^{3}$.
Find the stream function and hence find complex potential.
(b) Show that the function $f(z)$ defined by

$$
f(z)=\left\{\begin{array}{cc}
\frac{x^{3} y^{5}(x+i y)}{x^{6}+y^{10}}, & z \neq 0 \\
0, & z=0
\end{array}\right.
$$

is not analytic at the origin even though it satisfies CauchyRiemann equations at the origin.
(c) Expand $f(z)=\frac{z}{(z-1)(2-z)}$ in Laurent series valid for
(i) $|z-1|>1$ and
(ii) $0<|z-2|<1$.
(d) Verify Cauchy's theorem for the function $f(z)=3 z^{2}+i z-4$ along the perimeter of square with vertices $1 \pm i,-1 \pm i$.
(e) Evaluate the following integral:

$$
\oint_{c} \frac{12 z-7}{(z-1)^{2}(2 z+3)} d z
$$

where $C$ is the circle $|z|=2$.
(f) Using complex integration, evaluate $\int_{0}^{\infty} \frac{\cos \mathrm{mx}}{1+\mathrm{x}^{2}} \mathrm{dx}$.
2. Attempt any two parts of the following :-
$(10 \times 2=20)$
(a) Calculate $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ for the frequency distribution of heights of 100 students given in the following table and hence find coefficient of skewness and kurtosis.

| Height (cm.) | $144 \cdot 5-$ | $149 \cdot 5-$ | $154 \cdot 5-$ | $159 \cdot 5-$ | $164 \cdot 5-$ | $169 \cdot 5-$ | $174 \cdot 5-$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Class interval | $149 \cdot 5$ | $154 \cdot 5$ | 159.5 | $164 \cdot 5$ | $169 \cdot 5$ | $174 \cdot 5$ | $179 \cdot 5$ |
| Frequency | 2 | 4 | 13 | 31 | 32 | 15 | 3 |

(b) Using method of least squares, derive the normal equations to fit the curve $y=a x^{2}+b x$. Hence fit this curve to the following data.

| $x$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 1 | $1 \cdot 2$ | 1.8 | $2 \cdot 5$ | $3 \cdot 6$ | 4.7 | $6 \cdot 6$ | $9 \cdot 1$ |

(c) From the data given find the equation of lines of regression of x on y and y on x . Also calculate the correlation coefficient.

| $\mathbf{x}$ | 2 | 4 | 6 | 8 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{y}$ | 5 | 7 | 9 | 8 | 11 |

3. Attempt any two parts of the following :- $\quad(\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0})$
(a) The demand for a particular spare part in a factory was found to vary from day-to-day. In a sample study, the following information was obtained:

| Days | Mon | Tue | Wed | Thurs | Fri | Sat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No.of Parts <br> Demanded | 1124 | 1125 | 1110 | 1120 | 1125 | 1116 |

Use Chi-square to test the hypothesis that number of parts demanded does not depend on the day of the week at $5 \%$ level of significance.
(b) From the following series of annual data, find the trend line of semi-averages. Also estimate the value for 2009.

| Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Actual Value | 170 | 231 | 261 | 267 | 278 | 302 | 299 | 298 | 340 |

(c) Distinguish between the np-chart and p-chart.

The following is data of defective of 10 samples of size 100 each. Construct $n \bar{p}$-chart and give your comments.

| Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Defective | 6 | 9 | 12 | 5 | 12 | 8 | 8 | 16 | 13 | 7 |

4. Attempt any four parts of the following:( $5 \times 4=20$ )
(a) Perform five iterations of the bisection method to obtain the smallest positive root of the equation $x^{3}-5 x+1=0$.
(b) Find the real root of the equation $x \log _{10} x=4.77$ correct to four decimal places using Newton-Raphson method.
(c) Find the number of men getting wage between Rs. 10 from the following table:

| Wages (in Rs.) | 5 | 15 | 25 | 35 |
| :---: | :---: | :---: | :---: | :---: |
| No. of men | 9 | 30 | 35 | 42 |

(d) Prove the following relations:
(i) $\mu \delta=\frac{\Delta E^{-1}}{2}+\frac{\Delta}{2}$
(ii) $\mu \delta=\frac{\nabla+\Delta}{2}$
(e) Use Newton's divided difference formula to find the interpolating polynomial and hence evaluate $y(9.5)$ from the given data :

| x | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| y | 3 | 1 | 1 | 9 |

(f) Determine the missing values in the following table:

| x | 0 | 5 | 10 | 15 | 20 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 6 | 10 | - | 17 | - | 31 |

5. Attempt any two parts of the following :-
(a) Test if the following system of equations is diagonally dominant and hence solve this system using Gauss-Seidal method:

$$
\begin{aligned}
& 2 x_{1}+x_{2}+4 x_{3}=7 \\
& 3 x_{1}+x_{2}+2 x_{3}=6 \\
& -x_{1}+4 x_{2}+2 x_{3}=5 .
\end{aligned}
$$

(b) (i) Compute $f^{\prime}(3)$ from the following table:

| $x$ | 1 | 2 | 4 | 8 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 0 | 1 | 5 | 21 | 27 |

(ii) The velocities of a car which starts initially from rest (running on a straight road) at intervals of 2 minutes are given below :

| Time (minutes) | 2 | 4 | 6 | 8 | 10 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Velocity (km/hr) | 22 | 30 | 27 | 18 | 7 | 0 |

Apply Simpson's $3 / 8$ rule to find the distance covered by the car.
(c) Estimate $y(1)$ if $2 y y^{\prime}=x^{2}$ and $y(0)=2$ using Runge-Kutta method of fourth order by taking $\mathrm{h}=0.5$. Also compare the result with exact value.

