(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 9958 Roll No.


## B.Tech.

(SEM. III) ODD SEMESTER THEORY
EXAMINATION 2010-11
MATHEMATICS-III
Time : 3 Hours
Total Marks : 100
Note : (1) Attempt all questions.
(2) All questions carry equal marks.
(3) Provide table for area under normal curve.

1. Attempt any two parts of the following :-
(a) (i) Find the Fourier sine transform of $f(x)=\frac{e^{-a x}}{x}, a>0$.
(ii) Using Fourier cosine integral for $f(x)=e^{-K x}$, prove that

$$
\int_{0}^{\infty} \frac{\cos \lambda \mathrm{x}}{\mathrm{~K}^{2}+\lambda^{2}} \mathrm{~d} \lambda=\frac{\pi \mathrm{e}^{-\mathrm{Kx}}}{2 \mathrm{~K}}, \mathrm{x}>0, \mathrm{~K}>0 .
$$

(b) (i) Find the Fourier transform of

$$
\begin{aligned}
& \qquad f(x)=\left\{\begin{array}{l}
1, \text { for } \quad|x|<1 \\
0,
\end{array} \text { for }|x|>1\right.
\end{aligned} .
$$

(ii) Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, x>0, t>0$ subject to the boundary

$$
\text { conditions } u(0, t)=0, u(x, 0)=\left\{\begin{array}{ll}
1, & 0<x<1 \\
0, & x \geq 1
\end{array}\right. \text { and }
$$ $\mathrm{u}(\mathrm{x}, \mathrm{t})$ is bounded.

(c) Solve the following difference equation using Z-transform

$$
y_{n+2}-4 y_{n+1}+3 y_{n}=5^{n} .
$$

2. Attempt any four parts of the following :-
(a) State Cauchy-Riemann's equation. Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin, although Cauchy-Riemann's equations are satisfied at that point.
(b) Discuss the analyticity of $\mathrm{f}(\mathrm{z})=\mathrm{z} \overline{\mathrm{z}}$.
(c) If $\phi$ and $\psi$ are functions of x and y satisfying Laplace's equation, show that $s+$ it is analytic, where

$$
s=\frac{\partial \phi}{\partial y}-\frac{\partial \psi}{\partial x} \text { and } t=\frac{\partial \phi}{\partial x}+\frac{\partial \psi}{\partial y} .
$$

(d) State Cauchy's integral formula. Hence evaluate

$$
\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z \text {, where } C:|z|=3 \text {. }
$$

(e) Find the value of integral $\int_{0}^{1+i}\left(x-y-i x^{2}\right) d z$ along the real axis from $\mathrm{z}=0$ to $\mathrm{z}=1$ and then along a line parallel to imaginary axis from $z=1$ to $z=1+i$.
(f) State and prove Cauchy's theorem. Hence evaluate

$$
\int_{C} \frac{z^{2}+5 z+6}{z-2} d z \text {, where, } C:|z|=\frac{3}{2} \text {. }
$$

3. Attempt any two parts of the following :-
(a) Find the bilinear transformation which maps $z=1$, $i,-1$ respectively onto $w=i, 0,-1$. Hence find the image of $|z| \leq 1$ under this transformation.
(b) Evaluate $\int_{0}^{\pi} \frac{a d \theta}{1+2 a^{2}-\cos 2 \theta}$, using contour integration.
(c) State Cauchy's Residue theorem. Hence evaluate

$$
\int_{C} \frac{z^{2}}{(z-1)^{2}(z+2)} d z \text {, where } C:|z|=\frac{5}{2}
$$

4. Attempt any two parts of the following :-
$(10 \times 2=20)$
(a) Define the coefficient of Skewness and Kurtosis. Find the measures of Skewness and Kurtosis on the basis of moments for the following distribution :

| $x$ | $:$ | 1 | 3 | 5 | 7 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | $:$ | 1 | 4 | 6 | 4 | 1 |

(b) (i) Find the moment generating function of the random variable $x$ having the probability function given by

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ccc}
\mathrm{x}, & \text { when } & 0 \leq \mathrm{x}<1 \\
2-\mathrm{x}, & \text { when } & 1 \leq \mathrm{x}<2 \\
0, & \text { otherwise } &
\end{array}\right.
$$

(ii) Assume the mean height of soldiers to be 68.22 inches with a variance of 10.8 inches square. How many soldiers in a regiment of 10,000 would you expect to be over 6 feet tall?
(c) (i) If $\theta$ is the acute angle between the two regression lines in case of two variables $x$ and $y$, show that

$$
\tan \theta=\frac{1-r^{2}}{r} \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}
$$

Also, explain the significance of the formula when $\mathrm{r}=0$ and $\mathrm{r}= \pm 1$.
(ii) Two lines of regression are given by $\mathrm{x}+2 \mathrm{y}-5=0$ and $2 \mathrm{x}+3 \mathrm{y}-8=0$ and $\sigma_{\mathrm{x}}{ }^{2}=12$. Calculate the mean values of $x$ and $y$, the coefficient of correlation between x and y .
5. Attempt any two parts of the following:( $10 \times 2=20$ )
(a) Fit a second degree parabola to the following data:

| x | $:$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | $:$ | 25 | 28 | 33 | 39 | 46 |

(b) Solve $\mathrm{x}^{3}-3 \mathrm{x}^{2}+12 \mathrm{x}+16=0$ using Cardon's method.
(c) Solve the equation $x^{4}+8 x^{3}+9 x^{2}-8 x-10=0$ using Descarte's method.

