(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPCR II : 4071 Roll No.

B.Tech.
 (SEM. III) ODD SEMESTER THEORY EXAMINATION 2010-11

STRENGTH OF MATERIALS

Time : 3 Hours
Total Marks : 100
Note : (1) Attempt all questions.
(2) Marks are indicated against each part.
(3) Assume missing data suitably, if any.

1. Attempt any two parts :
(a) A vertical rod 2 m long, fixed at the upper end, is $13 \mathrm{~cm}^{2}$ in area for 1 m and $20 \mathrm{~cm}^{2}$ in area for 1 m . A collar is attached to the free end. Through what height can a load of 100 kg fall on to the collar to cause a maximum stress of $50 \mathrm{~N} / \mathrm{mm}^{2}$?

$$
\begin{equation*}
\mathrm{E}=2,00,000 \mathrm{~N} / \mathrm{mm}^{2} . \tag{10}
\end{equation*}
$$

(b) (i) What are the five principal theories of failure, name them?
(ii) Construct Mohr's circle for the case of plane stress $\sigma_{x}=360 \mathrm{~kg} / \mathrm{cm}^{2}, \sigma_{y}=200 \mathrm{~kg} / \mathrm{cm}^{2}$ and $\tau_{\mathrm{xy}}=60 \mathrm{~kg} / \mathrm{cm}^{2}$ and determine the magnitudes of the two principal stresses σ_{1} and σ_{2} and the angle ϕ between the direction σ_{x} and $\sigma_{.}$.
(c) (i) State and prove Castigliano's Theorem for concentrated loads. 5
(ii) The principal stresses at a point in an elastic material are $60 \mathrm{~N} / \mathrm{mm}^{2}$ tensile, $20 \mathrm{~N} / \mathrm{mm}^{2}$ tensile, and $50 \mathrm{~N} / \mathrm{mm}^{2}$ compressive. Calculate the volumetric strain.
$E=100,000 \mathrm{~N} / \mathrm{mm}^{2}$. 5
2. Attempt any one of the following :
(a) (i) A flywheel weighing 500 kg is mounted on a shaft 75 mm diameter and midway between bearings 0.6 m apart. If the shaft is transmitting 30 kW at 360 rpm . Calculate the principal stresses and the maximum shear stress at the ends of a vertical and horizontal diameter in a plane close to the flywheel.
(ii) Find the maximum deflection in a cantilever of length L due to a load W at its free end.
(b) A beam of uniform section 9 m long is carried on three supports at the same level, one at each end and one at 6 m from the left end. A uniformly distributed load of $16 \mathrm{kN} / \mathrm{m}$ is carried across the whole span, and a point load of 20 kN at 4.5 m from the end. Draw the S.F and B.M diagrams. 20
3. Attempt any two of the following :
(a) Determine the maximum angle of helix for which the error in calculating the extension of a helical spring under axial load by the "close - coiled" formula is less than 1%. 10
(b) A cantilever leaf spring of length 0.43 m has four leaves of thickness 9 mm . If an end load of 2.5 kN causes a deflection of 36 mm find the width of the leaves.
$\mathrm{E}=200,000 \mathrm{~N} / \mathrm{mm}^{2}$.
(c) A slender column of length l is built-in at its lower end and laterally supported (pin jointed) at its upper end. Find the first critical value of the compression load ρ.

Attempt any two of the following :
(a) A thin spherical shell of mean radius r and wall thickness t is subjected to tensile forces ρ acting along a diameter of the sphere as shown in figure. There is no internal pressure. Find the principal membrane stresses σ_{1} and σ_{2} at the point A on the shell defined by the angle ϕ as shown:

10

(b) The cylinder of hydraulic ram is 6 cm internal diameter. Find the thickness required to with stand an internal pressure of $40 \mathrm{~N} / \mathrm{mm}^{2}$, if the maximum tensile stress is limited to $60 \mathrm{~N} / \mathrm{mm}^{2}$ and maximum shear stress to $50 \mathrm{~N} / \mathrm{mm}^{2}$. 10
(c) A compound cylinder is to be made by shrinking one tube on to another so that the radial compression stress at the friction is $28.5 \mathrm{~N} / \mathrm{mm}^{2}$. If the outside diameter is 26.5 cm , and the bore 12.5 cm , calculate the allowance for shrinkage at the common diameter, which is 20 cm .

$$
\begin{equation*}
\mathrm{E}=210,000 \mathrm{~N} / \mathrm{mm}^{2} . \tag{10}
\end{equation*}
$$

5. Attempt any two of the following :
(a) A curved bar of square section 3 cm sides and mean redius of curvature 4.5 cm is initially unstressed. If a bending moment of $300 \mathrm{~N}-\mathrm{m}$ is applied to the bar tending to straighten it, find the stresses at the inner and outer faces.
(b) A steel tube having outside diameter 5 cm , bore 3 cm is bent into a quadrant of 2 m radius. One end is rigidly attached to a horizontal box plate to which a tangent to that end is a perpendicular, and the free end supports a load if 100 kg . Determine the Horizontal deflection of the free end under this load using Castigliano's Theorem. $\mathrm{E}=208,000 \mathrm{~N} / \mathrm{mm}^{2}$. 10
(c) (i) Develop a general theory of bending of prismatic beam of arbitrary cross-section. (not having an axial plane of symmetry). 7
(ii) Write brief note of Shear Centre. 3
