(Following Paper ID and Roll No. to be filled in your Answer Book)

B. Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION

 2010-11
NETWORKS ANALYSIS AND SYNTHESIS

Time: 3 Hours
Total Marks : 100
Note: Attempt all the questions.

1. Attempt any three of the following :
(a) Define the following :
(i) Connected graph
(ii) Path
(iii) Tree
(iv) Links.
(b) For the network shown write the tie-set Matrix and determine the loop current and the branch currents. 6

Figure 1
(c) For the graph shown in figure 2, find the cut-set schedule.

Figure 2
(d) Show that the graph shown in figure 3 is isomorphic. 6
(2)

Figure 3
2. Attempt any three parts of the following :
(a) (i) Write the super position theorem.
(ii) For the network shown determine Thevenin's equivalent source and the series impedance.

Figure 4
(b) Verify Tellegen theorem for the pair of networks shown. Select suitable values in the two circuits.

Figure 5
(c) Write the statement of maximum power transfer theorem and also prove that maximum power can be transferred if load is complex conjugate of internal impedance. 7
(d) Determine X_{1} and X_{2} is terms of R_{1} and R_{2} to give maximum power dissipation in R_{2}.

Figure 6
3. Attempt any two parts of the following :
(a) Construct the Bode plot for the following transfer functions:

$$
\begin{equation*}
G(s)=\frac{10(s+10)}{s(s+5)(s+2)} \tag{10}
\end{equation*}
$$

(b) Test whether the system represented by following characteristic equation is stable or not :

$$
\begin{equation*}
2 s^{4}+s^{3}+3 s^{2}+5 s+10=0 \tag{10}
\end{equation*}
$$

(c) For the given L-C network find the transform impedance $Z(s)$.

Figure 7
4. Attempt any two parts of the following :
(a) Derive the condition for reciprocity and symmetry in case of (a) h-parameters, (b) Y-parameters.
(b) Find the $Z_{11}(s)$ and $Z_{22}(s)$ parameters for the given bridged-T R-C network.

Figure 8
(c) Obtain the transmission parameters in term of Z-parameters and Y-parameters.
5. Attempt any two parts of the following :
(a) An impedance function is given by :

$$
Z(s)=\frac{(s+1)(s+5)}{s(s+3)(s+7)}
$$

find the R-C representation of foster-I and II forms. $101 / 2$
(b) For the constant-k, low pass filter, derive/find out the two cutoff frequencies.
(c) Find the driving point impedance as a quotient of polynomials for the given network. $101 / 2$

Figure 9

