

B. Tech.
 (SEM. III) ODD SEMESTER THEORY EXAMINATION 2010-11

 SWITCHING THEORY

 SWITCHING THEORY}

Time : 3 Hours
Total Marks : 100
Note : Attempt all the questions. All questions carry equal marks.

1. Attempt any four parts of the following :
(a) Convert binary 11010111.110 to decimal, octal and hexadecimal.
(b) Subtract 61 from 68 using BCD. Also show all the necessary steps.
(c) Using Tabular method and algebraic solution of P.I. table, obtain minimal realization of a function shown below :
$F(A, B, C, D, E)=\Sigma m(13,15,17,18,19,20,21,23,25$,

$$
27,29,31)+\Sigma \mathrm{d}(1,2,12,24)
$$

(d) How does parity help in error-detection? Explain.
(e) Using boolean postulates, prove DeMorgan's theorem.
(f) What are universal gates? Why they called so ? Explain with example.
2. Attempt any four parts of the following :

$$
(5 \times 4=20)
$$

(a) Design a full subtractor.
(b) Design a 4-bit magnitude comparator.
(c) Design a binary to Gray code converter.
(d) Design a full adder with a decoder and two OR-gates.
(e) A ROM is to be used to implement the boolean functions :

$$
\begin{aligned}
& \mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{ABCD}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}} \overline{\mathrm{D}} \\
& \mathrm{~F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=(\mathrm{A}+\mathrm{B})+(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathrm{C}) \\
& \mathrm{F}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(13,15)+\sum \mathrm{d}(3,5)
\end{aligned}
$$

What is the minimum size of the ROM required?
(f) Implement the following functions using PLA :

$$
\begin{aligned}
\mathrm{F}_{1} & =\mathrm{A} \overline{\mathrm{~B}}+\mathrm{AC} \\
\mathrm{~F}_{2} & =\mathrm{AC}+\mathrm{BC}
\end{aligned}
$$

3. Attempt any two parts of the following:
(a) (I) Convert a D-FF to a T-FF.
(II) Draw a neat diagram of master slave JK FF. Explain how race around condition is avoided using masterslave JK flip-flop.
(b) (I) Design a universal shift register.
(II) Draw the ASM chart for a binary multiplier.
(c) Design a JK flip-flop asynchronous sequential circuit that has two inputs and single output. The circuit is required to give an output equal to 1 if and only if the same input variable changes two or more times consecutively.
4. Attempt any four parts of the following :
$(5 \times 4=20)$
(a) Explain the AC noise margin and DC noise margin.
(b) What is CMOS ? Why its use in digital circuit is advantageous?
(c) Why FAN OUT of ECL is higher and propagation delay is lower?
(d) Explain the interfacing of CMOS to TTL logic gate.
(e) With the help of circuit diagram explain CMOS inverter.
(f) What is three state logic ? Draw the circuit diagram of three state NAND gate and explain its operation.
5. Attempt any four parts of the following : $(5 \times 4=20)$
(a) Define Hazard and find the hazard free realization of the combinational circuit :

$$
Y=A \bar{B}+B D
$$

(b) Discuss the fault table method for fault detection in digital circuit.
(c) Given two $2 \mathrm{~K} \times 8$ ROM ICs and two $2 \mathrm{~K} \times 8$ RAM ICs. Obtain a memory system of $8 \mathrm{~K} \times 8$ bits.
(d) With the help of diagram, explain the operation of a bipolar SRAM cell.
(e) Explain how a multiplexer can be used as ROM?
(f) Explain the basic structure of a EPROM cell? Why they are so popular?

