(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 0109

B. Tech.

(SEM. III) THEORY EXAMINATION, 2012-13

DIGITAL LOGIC DESIGN

Time : 3 Hours]
[Total Marks : 100

SECTION - A

1. Attempt all parts : $10 \times 2=20$
(a) Find 9's and 10's complement of the following decimal numbers :
(i) $24,681,234$
(ii) $63,325,600$
(b) Convert each of the following expressions into sum of products and products of sums :

$$
(A B+C)\left(B+C^{\prime} D\right) X^{\prime}+X\left(X+Y^{\prime}\right)\left(Y+Z^{\prime}\right)
$$

(c) Convert the following to the other canonical form.

$$
F(x, y, z)=\sum(2,4,6,7)
$$

(d) Implement the following expression using NOR gates

$$
\mathrm{F}(\mathrm{w}, x, \mathrm{y}, \mathrm{z})=\mathrm{w}^{\prime} x^{\prime}+\mathrm{x}^{\prime} \mathrm{z}^{\prime}
$$

(e) Construct 4 input priority encoder using combinational gates.
(f) Differentiate Ring Counter and Johnson Counter.
(g) Generate square wave output using D flip-flop.
(h) The contents of a four-bit register are initially 1001. The register is shifted six times to the right, with the serial input being 1010011. What are the contents of the register after two shifts?
(i) How many address lines and input-output data lines are needed in $64 \mathrm{~K} \times 8$ memory unit ?
(j) Define Primitive Flow Table.

SECTION - B

2. Attempt any three parts :
(a) (i) Draw a NAND logic diagram that implements the complement of the following function :

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,5,10,11,12,13,14,15)
$$

(ii) Simplify the following Boolean function, using Karnaugh maps.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(0,1,2,5,8,10,13)
$$

(b) (i) Design a 4-bit magnitude comparator using combinational gates.
(ii) Design a 4-bit Priority Encoder.
(c) Simplify the logic function given below, using Quine McClusky minimization technique and Realize simplified expression using universal gates.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,3,7,8,9,11,15)
$$

(d) Design a clocked sequential circuit that operates according to the state diagram shown. Implement the circuit using D flip-flop.

(e) Describe the general procedures that must be followed to ensure a race-free state assignment with example.
SECTION - C

Attempt all parts.

$$
10 \times 5=50
$$

3. Attempt any two parts :
(a) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.
(b) Simplify the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,7,11,12,13)$ which has the don't care condition $d(A, B, C, D)=\Sigma(0,2,5,9)$ and then express the simplified function in sum-of-minterms form.
(c) Explain VEM Reading Principle with example.
4. Attempt any one part.
(a) Design a 4-bit universal shift register using positive edge triggered D flip-flops to operate as shown in table below :

Select line			
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	Data line selected	Register operation
0	0	I_{0}	HOLD
0	1	I_{1}	Shift RIGHT
1	0	I_{2}	Shift LEFT
1	1	I_{3}	Parallel load

(b) Distinguish between Moore and Mealy model with necessary block diagrams.
5. Attempt any two parts :
(a) Design a 4×16 Decoder using 3×8 decoders.
(b) Implement a full subtractor with a decoder and NAND gates.
(c) Show that the characteristic equation for the complement output of JK flip-flop is $Q^{\prime}(t+1)=J^{\prime} Q^{\prime}+K Q$
6. Attempt any one part.
(a) Design and explain the working of Binary multiplier.

$$
C(x, y, z)=\sum(2,5,6,7)
$$

(b) Design a Four bit binary counter with parallel load.
7. Attempt any two parts.
(a) Explain Address multiplexing block diagram for a 64 K DRAM.
(b) Design a data path for expression $\mathrm{A}=\mathrm{A}+3$ and $\mathrm{A}=\mathrm{A}+\mathrm{B}$.
(c) Explain Flow Table and Race Conditions in asynchronous sequential circuit design.

