(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 0109

 Roll No.
B.Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2012-13 DIGITAL LOGIC DESIGN

Time : 3 Hours
Total Marks : 100
Note :-(1) Attempt all questions.
(2) All questions carry equal marks.

1. Attempt any TWO parts of the following : $\quad(\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0})$
(a) (i) What do you mean by sign magnitude representation? Discuss.
(ii) Explain the rules of 2's complement addition and subtraction with suitable examples.
(b) (i) Simplify the following Boolean equation :

$$
\mathrm{Y}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C} \overline{\mathrm{D}}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}} \overline{\mathrm{D}}
$$

(ii) Minimize the following logic function using K-map :
$\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,3,4,7,8,9,10,11$, $12,14)$
and implement it using logic gates.
(c) What is BCD code? What are the rules for $B C D$ addition? Explain with suitable example.
2. Attempt any TWO parts of the following: $\quad(\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0})$
(a) (i) Design a combinational logic circuit with three input variables that will produce logic 1 output when more than one input variables are logic 0 .
(ii) Draw logic diagram of half subtractor.
(b) Draw and explain the carry look ahead adder.
(c) Implement the following function using a $4: 1$ multiplexer :
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,3,5,7,8,9,12,13,14,15)$.
3. Attempt any TWO parts of the following: $\quad(\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0})$
(a) Explain J-K flip flop with preset and clear. Also draw the logic circuit of SR flip flop using T flip flop.
(b) Design a divide by 7 counter with suitable diagram.
(c) Design a 4 bit binary up down ripple counter. Also show its clock diagram.
4. Attempt any TWO parts of the following: $\quad(\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0})$
(a) Explain PLA with the help of block diagram.
(b) (i) Write short on EPROM.
(ii) Differentiate static RAM and dynamic RAM.
(c) Implement the following Boolean expressions using PROM :
(i) $\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,2,4,7)$
(ii) $\mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(1,3,5,7)$
5. Attempt any TWO parts of the following: (10×2=20)
(a) Design an asynchronous sequential circuit with two input, I_{1} and I_{2} and one output Z. Initially, both inputs
are equal to zero. When I_{1} or I_{2} becomes $1, Z$ becomes 1. When the second input goes to 1 , the output changes from 1 to 0 . The output stays at 0 until the circuit goes back to $(0,0)$.
(b) Draw an ASM chart for a modulo-4 UP/DOWN counter having the state transition table as given below :

Present State	Next State	
	$\mathbf{X = 0}$	$\mathbf{X}=\mathbf{1}$
00	01	11
01	10	000
10	11	01
11	00	10

(c) What is the significance of state assignment ? List the different techniques used for state assignment and discuss any one of them.

