Printed Pages—3

ECS301

(Following Paper ID a	nd Roll No. t	o be fi	illed i	n you	ur An	swer B	ook)
PAPER ID: 0109	Roll No.		5			1.154	

B.Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2012-13

DIGITAL LOGIC DESIGN

Time : 3 Hours

Total Marks : 100

Note :---(1) Attempt all questions.

(2) All questions carry equal marks.

1. Attempt any **TWO** parts of the following : (10×2=20)

- (a) (i) What do you mean by sign magnitude representation ? Discuss.
- (ii) Explain the rules of 2's complement addition and subtraction with suitable examples.
- (b) (i) Simplify the following Boolean equation :

 $Y(A, B, C, D) = \overline{A} \ \overline{B} \ C \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D}$

(ii) Minimize the following logic function using K-map:

 $Y(A, B, C, D) = \Sigma m(0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 14)$

and implement it using logic gates.

(c) What is BCD code ? What are the rules for BCD addition ? Explain with suitable example.

ECS301/DLT-44152

[Turn Over

- 2. Attempt any TWO parts of the following : (10×2=20)
 - (a) (i) Design a combinational logic circuit with three input variables that will produce logic 1 output when more than one input variables are logic 0.
 - (ii) Draw logic diagram of half subtractor.
 - (b) Draw and explain the carry look ahead adder.
 - (c) Implement the following function using a 4 : 1 multiplexer :
 - $f(A, B, C, D) = \Sigma m(2, 3, 5, 7, 8, 9, 12, 13, 14, 15).$
- 3. Attempt any TWO parts of the following : (10×2=20)
 - (a) Explain J-K flip flop with preset and clear. Also draw the logic circuit of SR flip flop using T flip flop.
 - (b) Design a divide by 7 counter with suitable diagram.
 - (c) Design a 4 bit binary up down ripple counter. Also show its clock diagram.
- 4. Attempt any **TWO** parts of the following : (10×2=20)
 - (a) Explain PLA with the help of block diagram.
 - (b) (i) Write short on EPROM.
 - (ii) Differentiate static RAM and dynamic RAM.
 - (c) Implement the following Boolean expressions using PROM :
 - (i) F1 (A, B, C) = $\Sigma m(0, 2, 4, 7)$
 - (ii) F2 (A, B, C) = $\Sigma m(1, 3, 5, 7)$
- 5. Attempt any TWO parts of the following : (10×2=20)
 - (a) Design an asynchronous sequential circuit with two input, I, and I, and one output Z. Initially, both inputs

ECS301/DLT-44152

2

are equal to zero. When I_1 or I_2 becomes 1, Z becomes 1. When the second input goes to 1, the output changes from 1 to 0. The output stays at 0 until the circuit goes back to (0, 0).

(b) Draw an ASM chart for a modulo-4 UP/DOWN counter having the state transition table as given below :

Present State	Next State				
	$\mathbf{X} = 0$	X = 1			
0 0	0 1	11			
0 1	10	0 0			
10	11	0 1			
11	0 0	10			

(c) What is the significance of state assignment ? List the different techniques used for state assignment and discuss any one of them.

3

ECS301/DLT-44152

9900