(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 0208 Roll No. \qquad

B.Tech.

(SEM. III) ODD SEMESTER THEORY

EXAMINATION 2012-13

BASIC SYSTEM ANALYSIS

Time : 3 Hours
Total Marks : 100
Note :- This paper contains five questions. Attempt all questions.

1. Answer any four parts :
(a) Explain the concepts of Stability and time invariance taking suitable examples.
(b) Explain what are power and energy signals. Explain their relationship with periodicity.
(c) $A x(t)$ signal is given by the figure 1. Draw and explain the signal $\phi(\mathrm{t})=\mathrm{x}\left(\frac{\mathrm{t}}{2}+6\right)$.

Figure 1
(d) Explain the Force-voltage and Force-current analogies.
(e) Draw the mechanical equivalent of the system shown in figure 2. Obtain the electrical analog system using the Force-

Current analogy.

Figure 2
(f) An R-L-C series circuit is as shown in figure 3. The switch is moved from position 1 to 2 at $t=0$ after it remained in position 1 for a long time. The initial current at $\left(t=0^{-}\right)$in the inductor is 2 A and the voltage across the capacitor at that instant is $=4$ volts.
Find the expression for the inductor current $i(t)$ for $t>0$

Figure 3
2. Answer any two parts :
$(10 \times 2=20)$
(a) Explain the three forms of Fourier series. Derive the exponential form of Fourier series. Find the exponential form of Fourier series for a triangular wave of maximum value 1 and time period 2 seconds.
(b) Derive the Fourier transforms of the following functions:
(i) Unit impulse function
(ii) rect (t)
(iii) $\mathrm{e}^{-2|t|}$
(iv) $\sin 2 \mathrm{t}$.
(c) State and derive the following four properties of Fourier Transform :
(i) Duality
(ii) Time shifting
(iii) Frequency shifting and (iv) Scaling.
3. Answer any two parts:
$(10 \times 2=20)$
(a) State and prove the Convolution theorem. Find the inverse Laplace transform of the following function using the Convolution theorem.

$$
F(s)=\frac{1}{s\left(s^{2}+2 s+4\right)}
$$

(b) Find the Laplace transform of the following waveforms shown in figure $4 a$ and $4 b$.
(i)

Fig 4 (a)
(ii)

Figure 4(b)
(c) (i) State and prove the initial and final value theorems.
(ii) A pulse of width one second and magnitude one volt is applied across a series R - L circuit with $\mathrm{R}=1 \mathrm{ohm}$ and $\mathrm{L}=$ one Henry. Find the current $\mathrm{i}(\mathrm{t})$ flowing in the circuit as a function of time. Use Laplace transform method.
4. Answer any two parts :
(a) What is the state transition matrix? What are its properties? Find the state transition matrix for a system matrix

$$
A=\left[\begin{array}{ll}
0 & -1 \\
2 & -3
\end{array}\right]
$$

(b) What are homogeneous and non-homogeneous systems? Derive the solution of the two systems in terms of the state variables.
(c) Obtain the response of the system :
$\dot{\mathbf{X}}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right] \mathbf{X}+\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right] \mathbf{U}(\mathrm{t}), \mathbf{X}(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
and $\mathbf{Y}(\mathrm{t})=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \mathbf{X}$
to the following input $U(t)=\left[\begin{array}{c}U_{1}(t) \\ U_{2}(t)\end{array}\right]=\left[\begin{array}{c}U(t) \\ e^{-3 t} U(t)\end{array}\right]$ where $U(t)$ is a unit step function.
5. Answer any four parts :
($5 \times 4=20$)
(a) What is the difference between the Z-transform and the Laplace transform? Explain.
(b) Define the properties of Z-transform.
(c) Find the Z-transform of the following sequences :
(i) $\mathrm{Y}_{1}[\mathrm{n}]=\{2,0,3,6,8\}$
(ii) $\mathrm{u}[\mathrm{n}]$.
(d) Find the inverse Z-transform of the following function:

$$
X[z]=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}
$$

for ROC (i) $|z|>1$, (ii) $|z|<0.5$ and (iii) $0.5<|z|<1$ draw the various ROCs.
(e) Enlist the properties of the ROC in Z-transform.
(f) Find the Z-transform of $x[n]=n a^{n} u[n]$.

