Printed Pages : 4	EEE301
(Following Paper ID and	Roll No. to be filled in your Answer Book)
PAPER ID : 0208	Roll No.

B. Tech (SEMESTER-III) THEORY EXAMINATION, 2012-13 BASIC SYSTEM ANALYSIS

Time : 3 Hours]

[Total Marks : 100

 $2 \times 10 = 20$

Note: Attempt all questions.

Section - A

1. Answer all parts of this section :

- (a) Define Z-transform and write its properties.
- (b) What do you mean by "continuous + ive signals"?
- (c) Write "FINAL VALUE THEOREM" in Laplace Transform domain.
- (d) What do you understand by "STATE TRANSITION MATRIX"? Also mention its properties.
- (e) State "INVERSE LAPLACE TRANSFORM".
- (f) Enlist f-i analogy of a given mechanical systems.
- (g) What do you understand by "FIRST" and "SECOND" order systems?
- (h) What do you mean by solution of difference equations in Z-transform domain?
- (i) Define "STATE" and "STATE VARIABLES" in state space representations.
- (i) What are the properties by FOURIER INTEGRALS?

Section – B

2. Answer any three parts of the following :

(a) What do you mean by "ANALOG" and "DIGITAL" signals ? Also mention its advantages and disadvantages. Give their physical examples.

0208

1

P.T.O.

 $3 \times 10 = 30$

(b) Derive the Laplace transform of the waveform as shown in fig. 1.

Fig. – 1 Waveform

(c) For the given Laplace transform

$$Y(s) = \frac{17s^3 + 7s^2 + s + 6}{s^5 + 3s^4 + 5s^3 + 4s^2 + 2s}$$

Find the initial and final value of the corresponding five function y(t).

- (d) Determine the Fourier transforms and amplitude spectrums of the following functions :
 - (i) $f(t) = \exp(-a|t|)$ for all values of t.

(ii)
$$f(t) = 1, -\infty < t < \infty$$

- (iii) Unit impulse function, $\delta(t)$.
- (iv) Unit signum function, Sgn(t) = -1, t < 0

$$=1, t > 0$$

(e) Draw the electric analogy, by f-o and f-I analogy, of the mechanical system shown in fig. 2. Write the equilibrium equations of the mechanical system.

Fig. – 2 Mechanical System

0208

Section – C

Answer all questions :

3. What do you mean by "FOURIER TRANSFORM" and "INVERSE FOURIER TRANSFORM"? Also mention its advantages and disadvantages.

OR

What do you understand by "LAPLACE TRANSFORM"? Also mention its advantages and disadvantages. Enlist any five applications of Laplace transforms.

4. Explain the following :

- (i) ELECTRO-MECHANICAL SYSTEMS
- (ii) PERIODIC SIGNALS

OR

Find $L^{-1}[F_1(s) \cdot F_2(s)]$ by using convolution integral theorem for the following functions :

- (i) $F_1 = \frac{1}{s(s+1)}; F_2 = \frac{1}{(s+3)}$
- (ii) $F_1 = \frac{1}{(s+a)}; F_2 = \frac{1}{(s+b)(s+c)}$
- 5. The natural response of a certain system is described by the homogeneous state equations :

$$\frac{dy_1}{dt} + 7y_1 - y_2 = 0, \text{ and}$$
$$\frac{dy_2}{dt} + 12y_1 = 0$$

Determine the state transition matrix of system.

OR

Consider the system described by

$$y + 3y + 2y = u$$

Derive the state space representation. Choose the state variables such that the system matrix becomes diagonal.

6. The unit step response of a system is given by $(1 - e^{-bt})$. Determine the unit impulse and unit ramp response h(t) of the system.

0208

3

P.T.O.

 $5 \times 10 = 50$

Show that trigonometric Fourier series of the wave form as shown in fig. 3 can be written as :

Fig. - 3 Waveform

7. A series R-L-C circuit with $R = 5\Omega$, L = 5 mH; $C = 50 \mu f$ has an applied voltage $V(t) = 150 \sin 1000 t + 100 \sin 200 t + 75 \sin 3000 t$. Determine the effective current and average power.

OR

Calculate the impedance, resistance, power and power factor of a circuit whose expression for voltage and current are given by :

4

sizes posteras desta

 $v = 100 \sin(wt + 60^\circ) - 50 \sin(3wt - 30^\circ)$ volts

 $i = 10 \sin (wt + 60^\circ) + 5 \cos (3wt + 60^\circ) amps$

0208