EOE 038
(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 0934 Roll No.

B. Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2012-13 DISCRETE MATHEMATICS

Time : 3 Hours
Total Marks : 100

Note : Attempt all questions.

1. Attempt any four parts of the following : $(5 \times 4=20)$
(a) Draw a Venn diagram of sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ where :
(i) A and B have elements in common, B and C have elements in common, but A and C are disjoint.
(ii) $\mathrm{A} \leq \mathrm{B}$, set A and C are disjoint, but B and C have elements in common.
(b) Let $f: R \rightarrow R$ and $g: R \rightarrow R$, where R is the set of real numbers. Find $f \circ g$ and g of, where $f(x)=x^{2}-2$ and $g(x)=x+4$. State where these functions are injective, surjective or bijective.
(c) If R and S are equivalence relations on the set A , show that the following are equivalence relations :
(i) $R \cap S$
(ii) $R \cup S$
(d) Let $\mathrm{A}=\{1,2,3\}$. Define $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ such that $f=\{(1,2),(2,1),(3,3)\}$. Find :
(i) f^{-1}
(ii) f^{2}
(iii) f^{3}.
(e) Let S be the set of all points in a plane. Let R be a relation such that for any two points, a and b;
$(a, b) \in R$ if be is within two centimetre from a, show that R is an equivalence relation.
(f) What is meant by recursively defined function ? Give the recursive definition of factorial function.
2. Attempt any four parts of the following : $\quad(5 \times 4=20)$
(a) Find whether the implication is tautology or not:

$$
((P \vee \sim Q) \wedge(\sim P \vee \sim Q)) \vee Q
$$

(b) Draw the truth table for the statement :

$$
(\sim(P \vee Q)) \vee((\sim P) \wedge Q)
$$

(c) Determine whether the following argument is valid or not :
"If x is a positive real number, then x^{2} is a positive real number. Therefore, if a^{2} is positive, where a is a real number, then a is a positive real number."
(d) Using truth table prove that:

$$
\mathrm{P} \leftrightarrow \mathrm{Q} \equiv(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{Q} \rightarrow \mathrm{P})
$$

(e) Using logical equivalent formulas, show that

$$
\sim(P \vee(\sim P \wedge Q)) \equiv \sim P \wedge \sim Q
$$

(f) Using logical equivalent formulas prove that the following implication is a tautology :

$$
(\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R})) \rightarrow((\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow(\mathrm{P} \rightarrow \mathrm{R})) .
$$

3. Attempt any two parts of the following : $\quad(10 \times 2=20)$
(a) (i) How many triangles are determined by the vertices of a regular polygon of n sides ? How many of them are if no side of the polygon is to be a side of any triangle?
(ii) In how many ways can the symbols a, b, c, d, e, e, e, e, e be arranged so that no e is adjacent to another e.
(६) Solve the recurrence relation given below:

$$
\mathrm{a}_{\mathrm{r}}-7 \mathrm{a}_{\mathrm{r}-1}+10 \mathrm{a}_{\mathrm{r}-2}=6+8 \mathrm{r}, \mathrm{n} \geq 2
$$

given $\mathrm{a}_{0}=1$ and $\mathrm{a}_{1}=2$.
(c) Using generating function, solve the following recurrence relation :

$$
a_{r}-9 a_{r-1}+26 a_{r-2}-24 a_{t-3}=0, n \geq 3
$$

with $\mathrm{a}_{0}=0, \mathrm{a}_{1}=1$ and $\mathrm{a}_{2}=10$.
4. Attempt any four parts of the following:
($5 \times 4=20$)
(a) Define a group. Verify whether the set of all 2×2 matrices of real numbers form a group with respect to matrix multiplication.
(b) Show that the system $(\mathrm{E},+, \cdot)$ of even integers is a ring under ordinary addition and multiplication.
(c) Let G be the set of all nonzero real numbers and let

$$
a * b=\frac{a b}{2} .
$$

Show that $\left(G,{ }^{*}\right)$ is an abelian group.
(d) Let $u(8)=\{1,3,5,7\}$ be a group with respect to multiplication modulo 8. Prove that every element of $u(8)$ is its own inverse.
(e) Prove that the union of two subgroups of a group G is a subgroup if and only if one is contained in the other.
(f) If A_{n} is the set of all even permutations of degree n, then prove that A_{n} is a finite group of order $\frac{n!}{2}$ with respect to product of permutations.
5. Attempt any two parts of the following: $(\mathbf{1 0} \times \mathbf{2}=\mathbf{2 0})$
(a) Define following with one example :
(i) Regular graph.
(ii) Complete graph.
(iii) Bi-partite graph.
(iv) Hamiltonian path.
(v) Chromatic number.
(b) (i) If G is a non-trivial tree, then prove that G contains at least two vertices of degree one.
(ii) Define binary tree and discuss two important applications of it.
(c) What do you understand by Automation theory? For the finite state machine whose transition function δ is given in the table and

$$
\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}, \Sigma=(0,1), \mathrm{F}=\left\{\mathrm{q}_{0}\right\},
$$

give the entire sequence of states for the input string 110101.

States	Inputs	
	0	1
$\rightarrow\left(\mathrm{q}_{0}\right)$	q_{2}	q_{1}
q_{1}	q_{3}	q_{0}
q_{2}	q_{0}	q_{3}
q_{3}	q_{1}	q_{2}

