Printed Pages—3

EEC303

(Following Paper ID and Roll No	. to b	e fill	ed i	n yo	ur A	nsv	ver	Book)
PAPER ID : 0324 Roll No.		010			17			pi g

B.Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2012-13

ELECTROMAGNETIC FIELD THEORY

Time : 3 Hours

Total Marks : 100

Note : Attempt all the questions.

1. Answer any four parts :

- (a) If $\overline{A} = 3a_r + 2a_\theta 6a_\phi$ and $B = 4a_r + 3a_\phi$. Determine :
 - (i) $\overline{A} \cdot \overline{B}$
 - (ii) $|\overline{A} \times \overline{B}|$
- (b) Prove that the total outward flux of a vector field A through the closed surfaces S is the same as the volume integral of the divergence of A.
- (c) Evaluate $\nabla \times \overline{A}$ and $\nabla \cdot \nabla \times \overline{A}$, if

$$\overline{A} = x^2 y a_x + y^2 z a_y - 2xz a_z.$$

(d) Prove that :

 $\nabla \cdot (V\overline{A}) = V\nabla \cdot \overline{A} + \overline{A} \cdot \nabla V$

where V is a scalar field and A is a vector field.

1

(e) If $U = xz - x^2y + y^2z^2$ evaluate div grad U.

(f) Explain Stoke's theorem.

2. Answer any four parts :

(a) Explain Coulomb's law and field intensity.

EEC303/DLT-44155

[Turn Over

- (b) Define Electric potential.
- (c) If $J = \frac{1}{r^3} (2\cos\theta a_r + \sin\theta a_{\theta}) A/m^2$. Calculate the current passing through a hemisphere shell of radius 20 cm.
- (d) A wire of diameter 1 mm and conductivity 5 × 10⁷ S/m has 10²⁹ free electrons/m³ when an electric field of 10 mV/m is applied. Determine :
 - (i) The current density
 - (ii) The current in the wire
 - (iii) The charge density of free electrons.
- (e) Explain Dielectric Boundary conditions.
- (f) Explain Free-space Boundary condition.
- 3. Answer any two parts :
 - (a) Given the magnetic vector potential $A = -\rho^2/4a_z$ Wb/m, calculate the total magnetic flux crossing the surface $\phi = \pi/2, 1 \le \rho \le 2$ m, $0 \le z \le 5$ m.
 - (b) Explain magnetic boundary conditions.
 - (c) A charged particle moves with a uniform velocity 4 a_x m/s in a region where $E = 20 a_y$ V/m and $B = B_o a_z$ Wb/m². Determine B_o such that the velocity of the particle remains constant.
 - 4. Answer any two parts :
 - (a) Prove that the net power flowing out of a given volume V is equal to the time rate of decrease in energy stored within volume V minus the conduction losses.

2

EEC303/DLT-44155

- .(b) A parallel plate capacitor with a plate area of 5 cm² and plate separation of 3 mm has a voltage 50 sin 10³t V applied to its plates. Calculate the displacement current assuming $\varepsilon = 4 \varepsilon_{a}$.
- (c) In a free space $H = 0.2 \cos (wt-Bx) a_z A/m$. Find the total power passing :
 - (i) A square plate of side 10 cm on plate x + z = 1.
 - (ii) A circular disc of radius 5 cm on plane x = 1.
- 5. Answer any two parts :
 - (a) Find the input impedance of 75 Ω lossless transmission line of length 0.1 λ when the load is short by using Smith chart.
 - (b) Derive the relation between reflection coefficient and voltage standing wave ratio (VSWR). Explain what will be the input impedance of transmission line when output impedance is short.
 - (c) A lossless transmission line used in a TV receiver has a capacitance of 50 PF/m and an inductance of 200 nH/m. Find the characteristics impedance for sections of a line 10 meter long and 500 meter long.

3

EEC303/DLT-44155

11100