(Following Paper ID and	Roll No. to be filled in your Answer Book)
PAPER ID: 0322	Roll No.

B. Tech.

(SEMESTER-III) THEORY EXAMINATION, 2012-13

FUNDAMENTALS OF ELECTRONIC DEVICES

Time: 3 Hours]

[Total Marks: 100

Section - A

1. Attempt all question parts:

 $2\times10=20$

- (a) Calculate Miller indices for a plane having intercepts at 4a, 8b and 2c along the three crystals axes.
- (b) Draw and explain the Fermi Dirac distribution function.
- (c) State differences between Phosphorescence and Flourescence.
- (d) What are Photoconductive devices? How their optical sensitivity can be evaluated?
- (e) Why Silicon is preferred over Germanium for power rectifiers?
- (f) What is contact potential? How does it vary with the biasing?
- (g) Explain briefly, the modulation doping in HEMT.
- (h) How does a BJT used as an Amplifier and a Switch?
- (i) What is population Inversion? State the relationship between the spontaneous emission and stimulated emission and condition for the LASER action.
- (j) What are Degenerate Semiconductors. Draw their energy band diagrams.

Section - B

2. Attempt any three question parts:

 $10 \times 3 = 30$

- (a) (i) A semiconductor has $N_c = 10^{19}/\text{cm}^3$, $N_v = 5 \times 10^{18}/\text{cm}^3$ and $E_g = 2$ eV. It is doped with $10^{17}/\text{cm}^3$ donors, calculate the electron, hole and intrinsic carrier concentrations at 62.7 C. Draw energy band diagram showing the position of E_F .
 - (ii) What is the difference between the Unit cell and the Primitive cell? Also calculate the packing fraction of a bcc lattice with lattice constant 'a'.
- (b) (i) Derive the expression for the excess carrier concentration after optical excitation. Also state the resulting carrier concentration equations in terms of Ouasi Fermi Levels.
 - (ii) What is Diffusion Length? Derive its value using continuity equation.

- (c) (i) In a p+n junction reverse biased at 10 V, the capacitance is 10 pF. If the doping is doubled and reverse bias is changed to 80 V, what will be the capacitance.
 - (ii) Derive the expression for the Depletion region width (W) of BJT under equilibrium conditions.
- (d) (i) Explain strong inversion in the MOSFET using relevant equations and energy band diagram.
 - (ii) Explain the construction and working of the MESFET.
- (e) (i) Explain the construction of a Solar cell. What is the fill factor of a solar cell?
 - (ii) Explain the 'Transferred Electron Mechanism' in the Gunn Diode.

Section - C

Attempt all questions.

 $10 \times 5 = 50$

3. Attempt any two parts:

 $5 \times 2 = 10$

- (a) A crystal with a simple cubic lattice has atomic radius of 2.5 Å and atomic weight 5.42. Calculate its density assuming that atoms touch each other.
- (b) Derive the expression for the equilibrium carrier concentrations (n_0, p_0) using Fermi Dirac Distribution function.
- (c) Differentiate between the Direct semiconductor and Indirect semiconductor with relevant band diagrams.

4. Attempt any one parts:

 $10\times1=10$

- (a) An n-type Si sample with $N_d=10^{15}/cm^3$ is steadily illuminated such that $g_{op}=10^{21}$ EHP/cm³-s. If $\tau_n=\tau_p=1$ µs for this excitation, calculate the separation in the Quasi Fermi levels, (F_n-F_p) .
- (b) What is the Diffusion of Carriers? Derive the expression for the Diffusion current crossing a unit area. Also draw the Drift and Diffusion of electrons and holes in an electric field.

5. Attempt any one part:

 $10 \times 1 = 10$

- (a) What is time variation of Stored Charge? Draw and explain the excess hole distribution in the n-region as a function of time during the transient.
- (b) State differences between Zener Breakdown and Avalanche Breakdown.

6. Attempt any one part:

 $10 \times 1 = 10$

- (a) Draw and explain the hole and electron flow in a p-n-p transistor. State the various currents flowing across the device.
- (b) Why MESFET is considered for the high speed applications?

7. Attempt any **two** parts:

 $5 \times 2 = 10$

- (a) Explain the working principle of IMPATT diode. How does the electric field and hole construction varies with the input a-c signal.
- (b) Explain the Triggering mechanism in SCR. How does the forward characteristic vary with the gate current?
- (c) What are Bilateral Devices? State example and explain its construction and working.

2