(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 1247 Roll No.

B.Tech.

(SEM. III) ODD SEMESTER THEORY
EXAMINATION 2013-14

DISCRETE STRUCTURES

Note :-Attempt all Sections.

SECTION-A

1. Attempt all parts :
(a) Let $\mathrm{A}=\{\mathrm{a},\{\mathrm{a}\}\}$. Determine whether the following statements are true or false :
(i) $\{\mathrm{a},\{\mathrm{a}\}\} \in \mathrm{P}(\mathrm{A})$
(ii) $\{\mathrm{a},\{\mathrm{a}\}\} \subseteq \mathrm{P}(\mathrm{A})$
(iii) $\{\{\{\mathrm{a}\}\}\} \in \mathrm{P}(\mathrm{A})$
(iv) $\{\{\{\mathrm{a}\}\}\} \subseteq \mathrm{P}(\mathrm{A})$.
(b) Find out the cardinality of the following sets:
$A=\{x: x$ is weeks in a leap year $\}$
$B=\{x: x$ is a + ve divisor of 24 and not equal to zero $\}$
$\mathrm{C}=\{\{ \}\}\}$
$D=\{\{\varnothing,\{\varnothing\}\}\}$.
(c) How many symmetric and reflexive binary relations are possible on a set S with cardinality n ?
(d) Define transitive closure with suitable example.
(e) Find the minimum number of students in a class to show that five of them are born on same month.
(f) Find the total number of squares in a chessboard.
(g) Define Group with suitable example.
(h) Define Lagrange's theorem. What is the use of the theorem?
(i) Determine by means of truth table the validity of DeMorgan's theorem for three variables :

$$
(\mathrm{ABC})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime} .
$$

(j) Define Binary Tree Traversal with example.

SECTION-B

2. Attempt all parts :
$(3 \times 10=30)$
(a) Let (A, \leq) be a partially ordered set. Let \leq be a binary relation on A such that for a and b in A, a is related to b iff $\mathrm{b} \leq \mathrm{a}$.
(i) Show that \leq partially ordered relation.
(ii) Show that (A, \leq) is lattice or not.
(b) (i) Define cyclic group with suitable example.
(ii) Simplify the following Boolean functions using three variable maps :
(a) $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,5,7)$
(b) $F(x, y, z)=\sum_{1}(1,2,3,6,7)$
(c) (i) Show that in a connected planner linear graph with 6 vertices and 12 edges, each of the regions is bounded by 3 edges.
(ii) Show that a regular binary tree has an odd number of vertices.

SECTION-C

3. Attempt all parts:
(a) Let $A=\{2,3,6,12,24,36\}$ and relation \leq be such that ' $x \leq y$ ' iff x divides y. Draw Hasse Diagram and find minimal and maximal elements.
(b) Find the number of integers between 1 and 250 that are divisible by any of the integers $2,3,5$, and 7 .
(c) Solve the following recurrence relation:
(i) $a_{r}-7 a_{r-1}+10 a_{r-2}=0$, given that $a_{0}=0$ and $a_{1}=3$.
(ii) Given that $a_{0}=0, a_{1}=1, a_{2}=4$ and $a_{3}=12$ satisfy the recurrence relation $a_{r}+C_{1} a_{r-1}+C_{2} a_{r-2}=0_{3}$ determine a_{r}.

OR

Prove by using mathematical induction that :
$7+77+777+$ \qquad $+777 . . .7=7 / 81\left[10^{n+1}-9 n-10\right]$, for every $n \in N$.
(d) (i) Given that the value of $\mathrm{P} \rightarrow \overline{\mathrm{Q}}$ is true, can you determine the value of $\mathrm{P} \vee(\mathrm{P} \leftarrow \longrightarrow \mathrm{Q})$.
(ii) Construct the truth table for the following statements:
$(\mathrm{P} \rightarrow \overline{\mathrm{Q}}) \rightarrow \overline{\mathrm{P}}$
$\mathrm{P} \longleftrightarrow(\overline{\mathrm{P}} \vee \overline{\mathrm{Q}})$.
OR
$\operatorname{Let} \mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2),(4,3),(2,2),(2,1),(3,1)\}$
is a relation defined on A. Find Transitive closure of R using
Warshall's algorithms.
(e) (i). Suppose G is a finite cycle-tree graph with at least one edge. Show that G has at least two vertices of degree 1.
(ii) Show that a connected graph with n vertices must have at least ($n-1$) edges.

