(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 1225 Roll No. $\square$

## B.Tech.

(SEM. III) ODD SEMESTER THEORY
EXAMINATION 2013-14
MATHEMATICS - III
[Branches: EC, ET, EL, CS, IT, AEI, EI, IC EN, EE]
Time : 3 Hours
Total Marks : 100
Note :- Attempt all questions from each Section as indicated. The symbols have their usual meaning.

## SECTION-A

1. Attempt all parts of this Section. Each part carries 2 marks :
$(2 \times 10=20)$
(a) Find residue of $f(z)=\frac{2 z+1}{z^{2}-z-2}$ at the pole $z=-1$.
(b) Define harmonic function.
(c) State Convolution theorem for Fourier Transform.
(d) Find the Z-Transform of $\left\{n_{C_{k}}\right\}, 0 \leq \mathrm{k} \leq \mathrm{n}$.
(e) Define coefficients of kurtosis.
(f) Define marginal and conditional distribution.
(g) Prove that: $|(X, Y)|<\|X\|\|Y\|$.
(h) Define Abelian group.
(i) Define rate of convergence.
(j) Write the formula for Simpson's $3 / 8$ rule.

## SECTION-B

Note :- Attempt any three parts of this Section. $\quad(\mathbf{1 0} \times \mathbf{3}=\mathbf{3 0})$
2. (a) Apply calculus residues to prove that:
$\int_{0}^{\infty} \frac{\cosh \mathrm{ax}}{\cosh \pi x} \mathrm{dx}=\frac{1}{2} \sec \frac{\mathrm{a}}{2}$.
(b) If $F_{c}(p)=\frac{1}{2} \tan ^{-1} \frac{2}{p^{2}}$, then find $f(x)$.
(c) Show that Poisson distribution is a limiting form of binomial distribution when $p$ is a very small and $n$ is very large. Also find mean and variance of Poisson distribution.
(d) If $\mathrm{p}=\mathrm{p}(\mathrm{x})=\mathrm{p}_{0}+\mathrm{p}_{1} \mathrm{x}+\mathrm{p}_{2} \mathrm{x}^{2}$ and $\mathrm{q}=\mathrm{q}(\mathrm{x})=\mathrm{q}_{0}+\mathrm{q}_{1} \mathrm{x}+\mathrm{q}_{2} \mathrm{x}^{2}$, then the inner product is defined by :
$(p, q)=p_{0} q_{0}+p_{1} q_{1}+p_{2} q_{2}$ for the vectors $X_{1}=1+2 x+3 x^{2}$ $X_{2}=3+5 x+5 x^{2}, X_{3}=2+x+8 x^{2}$. Find the orthogonal vectors.
(e) Use Gauss-Seidel method to solve the following system of simultaneous equations :

$$
\begin{aligned}
& 83 x+11 y-4 z=95 \\
& 7 x+52 y+13 z=104 \\
& 3 x+8 y+29 z=71
\end{aligned}
$$

Perform four iterations.

## SECTION-C

Note :- All questions of this Section are compulsory. Attempt any two parts from each question :
$(10 \times 5=50)$
3. (a) In a two dimensional fluid flow, the stream function is $\psi=-\frac{y}{x^{2}+y^{2}}$, find the velocity potential $\Phi$.

AS301/DNG-52684
(b) Expand $f(z)=\frac{z}{(z-1)(z-2)}$ in Laurent series valid for region:
(i) $|\mathrm{z}-1|>1$
(ii) $0<|z-2|<1$.
(c) State and prove Cauchy's Theorem.
4. (a) Find Fourier cosine transform of $\frac{1}{1+\mathrm{x}^{2}}$ and hence find

Fourier sine Transform of $\frac{x}{1+x^{2}}$.
(b) Find the inverse Z-transform of:
$F(z)=\frac{9 z^{3}}{(z-2)(3 z-1)^{3}}$.
(c) Solve by Z-transform the difference equation:
$y_{k+2}-2 y_{k+1}+y_{k}=3 k+5 . \quad y(0)=0, y(1)=1$.
5. (a) In a certain factory manufacturing razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10 . Use suitable distribution to calculate the approximate number of packets containing no defective, one defective and two defective blades respectively in a consignment of 20,000 packets.
(b) Find the moment generating function of the exponential distribution:
$f(x)=\frac{1}{c} e^{-x / c}, 0 \leq x \leq \infty, c>0$. Hence find its mean and S.D.
(c) Calculate the first four moments about une mean for the following data :

| Class <br> Interval | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 10 | 20 | 40 | 20 | 10 |

6. (a) Examine the following vectors for linear dependence and find the relation, if it exists :
$X_{1}=(1,2,1), X_{2}=(3,1,5), X_{3}=(3,-4,5)$.
(b) Let V be the vector space of all real valued continuous functions over R. Then show that the solutions set $W$ of the differential equation :
$3 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-4 y=0$, is a subspace of V .
(c) Show that the intersection of any two subspaces of a vector space is also a space of the same.
7. (a) Use Newton's Divided difference formula to find $f(x)$ from the following data :

| $x$ | 0 | 1 | 2 | 4 | 5 | 6 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1 | 14 | 15 | 5 | 6 | 19 |

(b) Compute the rate of convergence of Newton-Raphson method.
(c) Apply Runge-Kutta fourth order method to find an approximate value of y when $\mathrm{x}=0.2$, given that $\frac{d y}{d x}=x+y$ with initial condition $\mathrm{y}=1$ at $\mathrm{x}=0$.

