(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 1249 Roll No. | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

B.Tech.

(SEM. III) ODD SEMESTER THEORY

EXAMINATION 2013-14

DIGITAL DESIGN

SECTION-A

1. Attempt all parts :
(a) Convert (FAFA.B) $)_{16}=(?)_{10}$.
(b) Simplify the following Boolean Expressions $(x+y)(x+y)$ to a minimum no. of literals.
(c) How many address lines and input-output data lines are needed in $256 \mathrm{~K} \times 64$?
(d) How many Flip-Flops are required to design MOD-6 counter?
(e) Define the excutation table of S-R flip-flop.
(f) Explain the difference between a Johnson counter and a ring counter.
(g) Convert binary no. 101011 into gray code.
(h) Design Ex OR gate using NAND gate only.
(i) Find the complement of $(\bar{x}+\bar{y}+z)(\bar{x}+y)(x+\bar{z})$.
(j) Explain Volatile and Non Volatile memory.

SECTION-B

2. Attempt any three parts :
(a) (i) Simplify the function in sum-of-minterms form:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(4,5,6,7,12,13,14)$ -
$\mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,9,11,15)$ using Tabular Method
(ii) Implement the following Boolean function f , using the two-level forms of logic:
(a) NAND-AND
(b) AND-NOR
(c) OR-NAND and
(d) NOR-OR.
(b) (i) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,4,8,9,10,11,12,14)$
(i) Define a combinational circuit with three inputs x, y, and z and three outputs A, B and C. When the binary input is $0,1,2$ or 3 , the binary output is two greater than the input. When the binary input is $4,5,6$ or 7 , the binary output is two less than the input.
(ii) Implement the following Boolean function with a 4×1 MUX and external gates. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,11,12,13,14,15)$
(c) (i) A sequential circuit has two JK flip flops A and B and one input x. The circuit is described by the following flip flop input equations :

$$
\begin{array}{ll}
\mathrm{J}_{\mathrm{A}}=\mathrm{x} & \mathrm{~K}_{\mathrm{A}}=\mathrm{B}^{\prime} \\
\mathrm{J}_{\mathrm{B}}=\mathrm{x} & \mathrm{~K}_{\mathrm{B}}=\mathrm{A}
\end{array}
$$

(a) Derive the state equations $\mathrm{A}(\mathrm{t}+1)$ and $\mathrm{B}(\mathrm{t}+1)$ by substituting the input equations for the J and K variables.
(b) Draw the state diagram of the circuit.
(ii) Show that a BCD ripple counter can be constructed from a four-bit binary ripple counter with asynchronous clear and a NAND gate that detects the occurrence of count 1010.
(d) (i) Draw the logic diagram of the product-of-sums expression:
$Y=\left(x_{1}+x_{2}^{\prime}\right)\left(x_{2}+x_{3}\right)$.
Show that there is a static-O hazard when x_{1} and x_{3} are equal to 0 and x_{2} goes from 0 to 1 . Find a way to remove the hazard by adding one more OR gate.
(ii) Obtain a primitive flow table for a circuit with two inputs x_{1} and x_{2} and two outputs z_{1} and z_{2}, that satisfy the following four conditions :
(a) When $x_{1} x_{2}=00$, the O / P is $z_{1} z_{2}=00$
(b) When $x_{1}=1$ and x_{2} changes from 0 to 1 , the O / P is $\mathrm{z}_{1} \mathrm{z}_{2}=01$.
(c) When $x_{2}=1$ and x_{1} changes from 0 to 1 , the O / P is $\mathrm{z}_{1} \mathrm{z}_{2}=10$.
(d) Otherwise, the O / P does not change.
(e) (i) Design the controller whose state diagram is shown in fig. Use one-flip-flop per state method.

(ii) Obtain the 15-bit Hamming code word for the 11-bit data word 11001001010.

SECTION-C
3. Attempt any one part :
($5 \times 10=50$)
(a) Find all the prime implicants for the following Boolean function, and determine which are essential :
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,3,5,7,8,10,11,14,15)$
(b) Simplify the following Boolean function, using five variable maps :
$F(A, B, C, D, E)=A^{\prime} B^{\prime} C E^{\prime}+B^{\prime} C^{\prime} D^{\prime} E^{\prime}+A^{\prime} B^{\prime} D^{\prime}+$ $B^{\prime} C D^{\prime}+A^{\prime} C D+A^{\prime} B D$.
4. Attempt any one part :
(a) Implement a full subtractor with a decoder and NAND gates. The adder inputs are A, B and C. The adder produces outputs S and C .
(b) What is the difference between flow chart and ASM chart? Also draw an ASM chart state table for a two bit up-down counter having mode control input. $\mathrm{M}=1$ (up counting) and $\mathrm{M}=0$ (down counting). The circuit should generate an output 1 , whenever count become minimum or maximum.
5. Attempt any one part :
(a) Design MOD-12 Synchronous Counter.
(b) Explain the four bit Universal Shift Register.
6. Attempt any one part :
(a) (i) Explain the difference between asynchronous and synchronous sequential circuits.
(ii) Define fundamental-mode operation.
(iii) Explain the difference between stable and unstable statès.
(iv) What is the difference between an internal state and a total state ?
(b) An asynchronous sequential circuit is described by the excitation function :
$\mathrm{Y}=\mathrm{x}_{1} \mathrm{x}_{2}^{\prime}+\left(\mathrm{x}_{1}+\mathrm{x}_{2}^{\prime}\right) \mathrm{y}$ and $\mathrm{O} / \mathrm{P} \mathrm{z}=\mathrm{y}$.
(i) Draw the logic diagram of the circuit.
(ii) Derive the transition table and output map.
(iii) Obtain a two-state flow table.
(iv) Describe the behavior of the circuit.
7. Attempt any one part :
(a) Derive the PLA programming table for the combinational circuit that squares a three-bit number.
(b) Design the ROM circuit for the BCD to excess-3 code converter.

