(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 1226 Roll No.

B.Tech.

(SEM. III) ODD SEMESTER THEORY
EXAMINATION 2013-14
MATHEMATICS - III
[Branches: ME, AE, MT, TT, TE, TC, FT, CE CH]
Time: 3 Hours
Total Marks : 100
Note :- Attempt all questions from each Section as indicated. The symbols have their usual meaning.

SECTION-A

1. Attempt all parts of this Section. Each part carries 2 marks :
($2 \times 10=20$)
(a) Define Conformal Transformation.
(b) Find residue of $f(z)=\frac{z^{2}}{z^{2}+3 z+2}$ at the pole -1 .
(c) Define Fourier Transform of a function $f(\mathrm{x})$.
(d) Find the Z-Transform of $\left\{a^{k}\right\}, k \geq 0$.
(e) Define coefficients of Skewness.
(f) What is Total Probability Theorem?
(g) Define Spline Function.
(h) Show that $\delta=E^{\frac{1}{2}}+E^{-\frac{1}{2}}$.
(i) Define rate of convergence,
(j) What do you mean by initial value problem?

SECTION-B

2. Attempt any three parts of this Section. $\quad(10 \times 3=30)$
(a) State and prove Cauchy integral formula. Also evaluate $\oint_{c} \frac{z^{2}+1}{z^{2}-1} d z$, where c is the circle :
(i) $|z-1|=1$
(ii) $|z|=\frac{1}{2}$.
(b) Using Fourier Transform, solve $\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}},-\infty<x<\infty$, $\mathrm{t}<0 ; \mathrm{y}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})$.
(c) The first four moments of a distribution about the value ' 4 ' of the variable are $-1.5,17,-30$ and 108 . Find the moments about mean and about origin. Also find Skewness and Kurtosis.
(d) Use Gauss-Seidel method to solve the following system of simultaneous equations :

$$
\begin{aligned}
& 9 x+4 y+z=-17 \\
& x-2 y-6 z=14 \\
& x+6 y=4
\end{aligned}
$$

Perform four iterations.
(e) Given $\frac{d y}{d x}=y-x, y(0)=2$. Find $y(0.1)$ and $y(0.2)$ correct to four decimal places by Runge-Kutta fourth method.

SECTION-C

Note:- All questions of this Section are compulsory. Attempt any two parts from each question :
$(5 \times 2 \times 5=50)$
3. (a) Verify Cauchy's theorem by integrating z^{3} along the boundary of a square with vertices at $1+i, 1-i,-1+i$ and $-1-\mathrm{i}$.
(b) Evaluate the following integral by using complex integration.
$\int_{0}^{\pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$.
(c) Determine the analytic function $f(\mathrm{z})=\mathrm{u}+\mathrm{iv}$, in terms of z , whose real part is $e^{-x}(x \sin y-y \sin y)$.
4. (a) Find the Fourier transform of:
$F(x)=\left\{\begin{array}{l}1,|x|<a \\ 0,|x|>a\end{array}\right.$. Hence evaluate
(i) $\int_{-\infty}^{\infty} \frac{\sin a p \cos p x}{p} d p$
(ii) $\int_{0}^{\infty} \frac{\sin p}{p} d p$.
(b) Find the inverse Z-transform of:
$F(z)=\frac{1}{(z-3)(z-2)}$ for
(i) $|z|<2$
(ii) $2<|z|<3$
(iii) $|z|>3$.
(c) Solve by Z -transform the difference equation :
$y_{k+2}+6 y_{k+1}+9 y_{k}=2^{k} ;\left(y_{0}=y_{1}=0\right)$.
5. (a) State and prove Baye's theorem.
(b) A continuous random variables X has a p.d.f. $f(\mathrm{x})=3 \mathrm{x}^{2}, 0 \leq \mathrm{x} \leq 1$. Find a and b such that:
(i) $P(X \leq \mathrm{a})=P(X>\mathrm{a})$, and
(ii) $P(X>\mathrm{b})=.05$.
(c) Fit a Poisson distribution to the following data and calculate theoretical frequencies :

Death	0	1	2	3	4
Frequencies	122	260	15	2	1

6. (a) Find a positive value of $(17)^{1 / 3}$ correct to four decimal places by Newton-Raphson method.
(b) Obtain cubic spline for the following data:

x	0	1	2	3
$f(x)$	1	2	33	244

With the end conditions $M_{0}=M_{3}=0$ for $(0,1)$. Hence compute $f(0.5)$.
(c) From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age of 46 .

Age	45	50	55	60	65
Premium (in rupees)	114.84	96.16	83.32	74.48	68.48

7. (a) The table given below reveals the velocity ' v ' of a body during the time ' t ' specified. Find its acceleration at $\mathrm{t}=1.1$.

t	1.0	1.1	1.2	1.3	1.4
v	43.1	47.7	52.1	56.4	60.8

(b) Evaluate $\int_{0}^{6} \frac{e^{x}}{x+1} d x$ by Simpson's $3 / 8^{\text {th }}$ rule.
(c) Using Milne's method, solve $\frac{d y}{d x}=1+y^{2}$ with initial condition $\mathrm{y}(0)=0, \mathrm{y}(0.2)=0.2027, \mathrm{y}(0.4)=0.4228$, $y(0.6)=0.6841$, obtain $y(0.8)$.

