Printed Pages : 4

 Image: Second state
 NAS-301

 (Following Paper ID and Roll No. to be filled in your Answer Book)

 PAPER ID : 199320

 Roll No.

 B. Tech.

 (SEM. III) (ODD SEM.) THEORY

 EXAMINATION, 2014-15

 MATHEMATICS-III

Time : 3 Hours][Total Marks : 100Note : Attempt All Questions. All Questions carry equal marks

- 1 Attempt any four parts of the following : 5×4=20
 - (a) State Cauchy-Riemann theorem for an analytic function. Test the analyticity of the following Function :

$$f(z) = \frac{\left(x^3 - y^3\right) + i\left(x^3 + y^3\right)}{x^2 + y^2}, \text{ if } z \neq 0 \text{ and}$$

$$= 0$$
 if $z = 0$

- (b) State Cauchy- integral theorem for an analytic function. Verify this theorem by integrating the function z³ + iz along the boundary of the rectangle with vertices + 1, -1, i, -i.
- (c) Show that the function $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic.

Find the harmonic conjugate of u.

1

199320]

[Contd...

(d) Evaluate the integral $\int \frac{e^{2z}}{(z+1)^5} dZ$, around the boundary

of the circle |z| = 2.

(e) Find the Taylor series expansion of the function $\tan^{-1} z$ about the point $z = \pi/4$.

(f) Evaluate the integral
$$\int_0^{\pi} \frac{\cos^2 3\theta}{5 - 4\cos 2\theta} d\theta$$
.

- Attempt any two parts of the following : 10×2=20
- (a) Find the Fourier transform of the following function $f(x) = 1-x^2$, if $|x| \le 1$ and f(x) = 0, if |x| > 1
- (b) Using Z transform solve the following difference equation

 $Y_{n+2} - (2\cos\alpha)Y_{n+1} + Y_n = 7^n$ with the conditions that $Y_0 = 5$, $Y_1 = 1$.

- (c) State the convolution theorem for Fourier transform. Prove that the Fourier transform of the convolution of the two functions equal to the product of their Fourier transforms.
- 3 Attempt any two parts of the following : $10 \times 2=20$
 - (a) Define skewness and kurtosis of a distribution. The first four moments of a distribution are 0, 2.5, 0.7, and 18.71. Find the coefficient of skewness and kurtosis.
 - (b) Fit a second degree parabola to the following data :

x	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	8	13	5

199320]

2

[Contd...

2

(c) Define coefficient of correlation and regression.
 If θ is the acute angle between the two lines of regression then prove that

$$\tan \theta = \frac{1 - r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$$

where r, σ_x , σ_y have their usual meanings. Give the significance of the formula when r = 0 and $r = \pm 1$.

- 4 Attempt any two parts of the following : 10×2=20
 - (a) Derive Newton Raphson's method to find a root of the equation f(x) = 0. Prove that this method has quadratic convergence.
 - (b) Apply Newton's divided difference method to obtain an interpolatory polynomial for the following data.

x	3	5	7	9	11	13
f(x)	31	51	17	19	90	110

(c) Obtain Lagrange's Interpolatory for the following data :

x	1	3	5	7	10
f(x)	.13	31	25	37	101

Find the values of f(4) and f(8.5).

199320]

3

[Contd...

Attempt any two parts of the following : 10×2=20

Solve the following system of linear equations using (a) Gauss-Seidel method

10x + 3y + 7z = 41, 3x + 20y + 17z = 101, x + 19y + 23z = 201,

perform three iterations.

State Simpson's three-eighth rule. Using this rule evaluate (b) the following integral

$$\int_0^6 \frac{x}{1+x^5} dx$$

State Runge-Kutta method of fourth order. Using this (c) method find the values of y (0.2), y(0.4) and y(0.6)for the following initial value problem

 $\frac{dy}{dx} = x^3 - y^3$ with condition that y(0) = 1

4

199320]

5

[44150]