(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 199320

Roll No. \square

B. Tech.

(SEM. III) (ODD SEM.) THEORY

EXAMINATION, 2014-15

MATHEMATICS-III

Time: $\mathbf{3}$ Hours]
[Total Marks : 100
Note : Attempt All Questions. All Questions carry equal marks
1 Attempt any four parts of the following : $\mathbf{5 \times 4 = 2 0}$
(a) State Cauchy-Riemann theorem for an analytic function. Test the analyticity of the following Function :

$$
\begin{aligned}
f(z) & =\frac{\left(x^{3}-y^{3}\right)+i\left(x^{3}+y^{3}\right)}{x^{2}+y^{2}}, \text { if } z \neq 0 \text { and } \\
& =0 \text { if } z=0
\end{aligned}
$$

(b) State Cauchy- integral theorem for an analytic function.

Verify this theorem by integrating the function $z^{3}+i z$ along the boundary of the rectangle with vertices $+1,-1, \mathrm{i},-\mathrm{i}$.
(c) Show that the function $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic.

Find the harmonic conjugate of u.
(d) Evaluate the integral $\int \frac{e^{2 z}}{(z+1)^{5}} d Z$, around the boundary
of the circle $|z|=2$.
(e) Find the Taylor series expansion of the function $\tan ^{-1} \mathrm{z}$ about the point $z=\pi / 4$.
(f) Evaluate the integral $\int_{0}^{\pi} \frac{\cos ^{2} 3 \theta}{5-4 \cos 2 \theta} d \theta$.

2 Attempt any two parts of the following : $10 \times 2=\mathbf{2 0}$
(a) Find the Fourier transform of the following function $\mathrm{f}(\mathrm{x})=1-\mathrm{x}^{2}$, if $|x| \leq 1$ and $\mathrm{f}(\mathrm{x})=0$, if $|x|>1$
(b) Using Z - transform solve the following difference equation
$Y_{n+2}-(2 \cos \alpha) Y_{n+1}+Y_{n}=7^{n}$ with the conditions that $Y_{0}=5, Y_{1}=1$.
(c) State the convolution theorem for Fourier transform. Prove that the Fourier transform of the convolution of the two functions equal to the product of their Fourier transforms.

3 Attempt any two parts of the following : $\quad \mathbf{1 0 \times 2}=\mathbf{2 0}$
(a) Define skewness and kurtosis of a distribution. The first four moments of a distribution are $0,2.5,0.7$, and 18.71. Find the coefficient of skewness and kurtosis.
(b) Fit a second degree parabola to the following data :

x	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	8	13	5

(c) Define coefficient of correlation and regression.

If θ is the acute angle between the two lines of regression then prove that

$$
\tan \theta=\frac{1-r^{2}}{r} \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}
$$

where $\mathrm{r}, \sigma_{x}, \sigma_{y}$ have their usual meanings. Give the significance of the formula when $r=0$ and $r= \pm 1$.

4 Attempt any two parts of the following:
$10 \times 2=20$
(a) Derive Newton - Raphson's method to find a root of the equation $f(x)=0$. Prove that this method has quadratic convergence.
(b) Apply Newton's divided difference method to obtain an interpolatory polynomial for the following data.

x	3	5	7	9	11	13
$f(x)$	31	51	17	19	90	110

(c) Obtain Lagrange's Interpolatory for the following data :

x	1	3	5	7	10
$f(x)$	13	31	25	37	101

Find the values of $f(4)$ and $f(8.5)$.

5 Attempt any two parts of the following: $\quad 10 \times 2=20$
(a) Solve the following system of linear equations using Gauss-Seidel method
$10 \mathrm{x}+3 \mathrm{y}+7 \mathrm{z}=41$, $3 x+20 y+17 z=101$, $x+19 y+23 z=201$, perform three iterations.
(b) State Simpson's three-eighth rule. Using this rule evaluate the following integral

$$
\int_{0}^{6} \frac{x}{1+x^{5}} d x
$$

(c) State Runge-Kutta method of fourth order. Using this method find the values of $y(0.2), y(0.4)$ and $y(0.6)$ for the following initial value problem
$\frac{d y}{d x}=x^{3}-y^{3}$ with condition that $y(0)=1$

