Printed Pages: 3	284	NME-309
(Following Paper II)	and Roll No. to Answer Book)	be filled in your
Paper ID :140304	Roll No.	
	Set-I	
	MCADD	

(SEM. III) THEORY EXAMINATION, 2015-16 THERMAL & HYDRAULIC MACHINES

[Time: 3 hours] [MaximumMarks:100

Section-A

Note: Attempt all parts. All parts carry equal marks. Write answer of each part in short. $2 \times 10 = 20$

- (a) What is Thermodynamic equilibrium? Q.1
 - (b) Distinguish between (i) Open System & closed System (ii) Path function & point function.
 - (c) Define reheat factor?
 - (d) What is Inter-cooling in gas turbine?
 - (e) What is scavenging in 2 stroke engine?
 - Differentiate between Four stroke engine and two stroke engine.
 - (g) Define velocity of the flow and velocity of whirl and explain their significance.

- (h) On what factors does not no. of jets depend in case of Pelton wheel?
- (i) Explain the function of spiral casing for a centrifugal pump?
- (j) Explain nested queries.

Section-B

Note: Attempt any five questions from this section.

 $10 \times 5 = 20$

- Q2. Explain the method of steam turbine governing and control.
- Q3. Describe Zero'th, Ist & 2nd laws of thermodynamics.
- Q4. With the help of graphical representation explain stages of formation of steam.
- Q5. Atmosphere air at 1 bar & 45° C is compressed isothermally to 15 bar & then it is Q(1) expanded back adiabatically without friction to its initial pressure. Determine its final temp, net work done and the net heat transfer with its surroundings. Assume Y=1.4, R=287 Nm/KgK & Cv=717.5 Nm/KgK.
- Q6. Prove that for moving flat plate, work done $w=pA(V-U)^2U$.
- Q7. Define Priming and Cavitation in pump.
- Q8. Give the differences between centrifugal and reciprocating pump.

Q9. Explain the indicator diagram of a reciprocating pump. Show the effect of acceleration of piston on the indicator diagram.

Section-C

Note: Attempt any two questions from this section.

 $(15 \times 2 = 30)$

- Q10. (a) Describe air standard Otto, Diesel, Brayton cycles by drawing diagrams.
- Q11. Describe methods of improving Rankine cycle efficiency by
 - (a) Super heating of steam, increase steam, pressure inlet to turbine and
 - (b) Reheat & regenerative cycles.
- Q12. In Parson's reaction turbine running at 600 rpm with 50% reaction develop 90 kw/kg/s of steam. The exit angle of the blades is 20° and steam velocity is 1.4 times the blade velocity determine:
 - (a) Blade velocity
 - (b) Inlet angle of the blades.