Printed Pages: 4	449	NEC-302
(Following Paper I	D and Roll No. to	be filled in your
	Answer Book)	
Paper ID :131302	Roll No.	

B.Tech.

(SEM. III) THEORY EXAMINATION. 2015-16

FUNDAMENTAL OF ELECTRONIC DEVICES

[Time:3 hours]

[Total Marks:100]

Section-A

- 1. Attempt **all** parts. All parts carry equal marks. Write answer of each part in short. $(10 \times 2=20)$
 - (a) Differentiate Zener and avalanche mechanism on the basis of doping, voltage and required depletion region width and ionization effect.
 - (b) Si sample is doped with 10^{20} As atoms/cm³. What is equilibrium concentration of holes at 300 K? Where is E_f relative to E_i? Draw the energy band diagram to show the position of E_i and E_f. Take $n_i = 1.5 \times 10^{10}$ cm⁻³.
 - (c) What is indirect band gap semiconductors.
 - (d) What is lattice scattering.

- (e) How high electron mobility channel is created in HEMT?
- (f) Which semiconductor parameters are measured from Hall effect.
- (g) State the principle of Invariance of Fermi level.
- (h) What is superiority of metal semiconductor diode over conventional diode?
- (i) Why 3rd quadrant is preferred for photo detectors?
- (j) What is figure of merit of photodiode?

Section-B

Attempt **any five** questions from this section: (5x10=50)

- 2. Calculate packing fraction and formation (with FCC) of Si-unit cell. Also describe the energy band splitting in Si crystal formation.
- 3. Discuss the temperature dependence of Fermi-Dirac distribution function for semiconductor materials. Derive the thermal equilibrium concentration of electron.
- 4. Describe diffusion of carriers and derive the current equation resulting due to this phenomenon. Also, derive the Einstein relation.

10000

NEC-302

- 5. A semiconductor sample is exposed to a photonic excitation for a long time(t<0). Under low level injection, derive the equation governing the decay of excess carrier and life time of carrier if the excitation is removed at t=0.
- 6. Derive the expression of contact potential for PN homojunction diode. Boron is implanted into an n-type Si sample ($N_d = 10^{16} \text{ cm}^{-3}$), forming an abrupt junction of square cross section with area= $2 \times 10^{-3} \text{ cm}^2$. Assume acceptor concentration in p-type region is $N_a = 4 \times 10^{18} \text{ cm}^{-3}$. Calculate $V_0 Q^+$, E_0 and depletion region extension on either side of junction at RT. (Given $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$, $\varepsilon_r = 11.8$, $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$ and KT=0.0259 eV at RT).
- 7. Describe in detail the operation of n-channel enhancement MOSFET. Draw is physical structure and I-V characteristic.
- 8. With the help of neat diagram describe the operation of Impact ionization avalanche transit time diode.
- 9. Deduce the conditions of lasing. Describe the operation of semiconductor LASER.

Section-C

Attempt **any two** question in this section : $(2 \times 15=30)$

- 10. Mention ideally desired characteristics of (parameters) area, doping, lifetime and width of base region in BJT. With the help of neat diagram showing the various current components of a PNP BJT, describe emitter injection efficiency, base transport factor and collector to base amplification ratio. Describe how the base current controls the operation of BJT.
- 11. Derive the ideal diode equation. Discuss the majority carrier flow mechanism in neutral regions.
- 12. With the help two transistor analogy explain the operation of PNPN diode. Also describe various turn-on mechanisms used in SCR.

-×-

ļ