Printed Pages: 6			282	NEC-301
(F	ollowi	ng Paper I	D and Roll No Answer Bo	o, to be filled in your ook)
Paper ID : 131301			Roll No.	
			В. ТЕСН.	
	(SEN	л. нь) ТНЕ	ORY EXAMU	NATION, 2015-16
	NI	TWORK /	ANALYSIS AN	D SYNTHESIS
[Time:3 hours]				[Total Marks:100]
			Section-A	
1.	Attempt all parts. All parts carry equal marks. Write answer of each part in short: $(2x10=20)$			
	(a)	Describe the various elements of a network.		
	(b)	Write the properties of LC driving point function.		
	(c)	What is positive real function?		
	(d)	Write the statement of Thevenin's theorem.		
	(e)		-	ession of 'Unit Step' and d in network analysis.
	(1)	Define Ti	ansfer function	n' of a network.

- (g) What do you mean by complex frequency?
- (h) What is Hurwitz Polynomial?
- (i) Explain 'zeros of transmission' in a network.
- (j) What do you mean by cut-off frequency of an active filter?

Section-B

Note: Attempt any five questions from this section:

$$(10x5=50)$$

2. Prove that in a parallel-parallel interconnected two networks with admittance matrix $[Y_A]$ and $[Y_B]$ respectively. The overall Y-matrix is given by:

$$[Y] = [Y_A] + [Y_B]$$

3. An impedance function is given by:

$$Z(s) = \frac{2(s+1)(s+3)}{(s+2)(s+6)}$$

Find the Foster-I and Cauer-I forms for the network.

4. The network shown in the Fig.1 is a current controlled current source. For this network, find the Y parameters.

5. In the network shown in Fig.2 $C_1 = C_2 = 1F$ and $R_1 = R_2 = 1\Omega$. The capacitor C_1 is charged to $V_0 = 1V$ and connected across the $R_1 - R_2 - C_2$ network at t = 0. C_2 is initially uncharged. Find an expression for $V_2(t)$

6. Enlist properties of Hurwitz polynomials and positive functions.

7. List properties of transfer function. Determine the circuit elements of the constant resistance bridged-T circuit, shown in Fig.3 that provides the voltage ratio:

$$\frac{V_2(s)}{V_1(s)} = \frac{s^2 + 1}{s^2 + 2s + 1}$$
, Assume R = 1 Ω

- 8. Distinguish between Chebyshev approximation and maximally flat approximation as applicable to low pass filters. What is the purpose of magnitude and frequency scaling in low pass filter design?
- 9. A third order-Butterworth polynomial approximation is desired for designing a low-pass filter. Determine H(s) and plot its poles. Assume unity d-c gain constant.

Section-C

Attempt any two questions from this section.

(15x2=30)

10. The network shown in Fig. 4, find $\frac{V_2}{V_1}$ if Za * Zb = R

- 11. Test whether:
 - (a) The polynomial $F1(s)=s^4+s^3+2s^2+3s+2$ is Hurwitz; and
 - (b) The function $F(s) = \frac{Ks}{S^2 + a}$ is positive real, where a and K are positive constants.

- 12. Realize the impedance $z(s) = \frac{2(s^2 + 1)(s^2 + 9)}{s(s^2 + 4)}$ in any three forms of synthesis given below:
 - (a) Foster-I form
 - (b) Foster-II form
 - (c) Cauer-I form
 - (d) Cauer-II form

—X—