(Following Paper ID and Roll No. to be filled in your Answer Book)

Paper ID : 199301

B.Tech.

(SEM. III) THEORY EXAMINATION, 2015-16

ENGINEERING MATHEMATICS-III

[Time:3 hours]
[MaximumMarks: 100

Section-A

Q. 1 Attempt all parts. All parts carry equal marks. Write answer of each part in shorts.
(a) Find inverse Z-transformation of $\frac{8 z-z^{3}}{(4-z)^{3}}$
(b) If $u(x, y)=x^{2}-y^{2}$, prove that the u satisfies Laplace euqations.
(c) Evaluate $\int_{C} \frac{z^{2}+1}{z^{2}-1} d z$ where C is circle $|z|=3 / 2$.
(d) Expand $\frac{1}{(z+1)(z+3)}$ in the regions $|z|<1$
(e) Estimate the production for 1964 and 1966 from the following data :

Year: $\quad 1961196219631964196519661967$
Production: 200220260 - 350 - 430
(f) State Newton - Gregory backward interpolation formula.
(g) Find Z-transformation of $f(k)=\left(\begin{array}{l}1, k=0 \\ 0, k \neq 0\end{array}\right.$
(h) State Cauchy's integral theorem.
(i) Prove that: $\Delta \log f(x)=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]$
(j) Define regression lines.

Section-B

Note: Attempt any five Questions from this section:
Q. 2 Find the Fourier transform of $F(x)= \begin{cases}1, & |x|<a \\ 0, & |x|>a\end{cases}$
Q. 3 Examine the nature of the function

$$
\begin{aligned}
& f(z)=\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}} ; z \neq 0 \\
& f(0)=0
\end{aligned}
$$

In the region including the origin.
(2)

NAS-301
Q. 4 Solve the following system of linear equations by Crout's Method :
$x+y+z=3 ; 2 x-y+3 z=16 ; 3 x+y-z=-3$
Q. 5 Find the rank correlation coefficient of marks of A and B from the following data :

Marks A	15	20	27	13	45	60	20	75
Marks B	50	30	55	30	25	10	30	70

Q. 6 A survey of 240 families with 4 children shows the following distribution :
No. of boys
$\begin{array}{lllll}4 & 3 & 2 & 1 & 0\end{array}$
No. of families : $\begin{array}{llllll}10 & 55 & 105 & 58 & 12\end{array}$

Test the hypothesis that male and female births are equal probable.
(Given $\chi^{2} 0.05=9.49$ and 11.1 for 4 d.f. and 5 d.f. respectively)
Q. 7 Solve the following differential equation using RungeKutta method :

Given that $\frac{d y}{d x}=\frac{1}{x+y}$ with $y(0)=1$, find $y(2)$.
Q. 8 Use the method of least squares to obtain the normal equations and fit the curve for $y=\frac{C_{0}}{x}+c_{1} \sqrt{x}$ to the following table of values :

x	0.1	0.2	0.4	0.5	1	2
y	21	11	7	6	5	6

Q. 9 The table given below reveals the velocity ' v ' of a body during the time ' t ' specified. Find its acceleration at $t=1.1$.

$\mathrm{t}:$	1.0	1.1	1.2	1.3	1.4
$\mathrm{v}:$	43.1	47.7	52.1	56.4	60.8

Section-C

Attempt any two questions from this section: $(15 \times 2=30)$
Q10 a) Using Lagrange's interpolation formula, find $y(10)$ from the following table.

$\mathrm{x}:$	5	6	9	11
$\mathrm{y}:$	12	13	14	16

b) The first four moments about the working mean 28.5 of a distribution are $0.294,7.144,42.409$ and 454.98. Calculate the moments about the mean. Also evalute β_{1} and β_{2} and comment upon the skewness and kurtosis of the distribution.
c) Using the Fourier integral transformation, show that $e^{-a x}=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos s x}{s^{2}+a^{2}} d s, a>0, x \geq 0$
Q. 11 a) Evaluate by Cauchy integral formula $\oint_{C} \frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)} d z$ where C is the circle $|z|=3$.
b) Solve $x^{3}-5 x+3=0$ by using Regula - Falsi method.
c) Using the Z-transform solve the following difference equations :
$y_{k+2}+4 y_{k+1}+3 y_{k}=3^{k}$
given $y_{(0)}=0, y_{(1)}=1$
Q. 12 a) From the data given below, tind the number of items n : $r_{x y}=0.5 \sum X Y=120, \sum X^{2}=90, \sigma_{y}=8$ where x and y are deviations from the arithmetic mean.
b) If $f(z)=u+i v$ is analytic function and $u-v=e^{x}(\cos y-\sin y)$, find $f(z)$ in terms of z.
c) Find $\int_{0}^{6} \frac{e^{x}}{1+x} d x$ approximately using Simpson's $3 / 8$ rule on integration.

