(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID : 2289953

 Roll No. \square
B.TECH

Regular Theory Examination (Odd Sem-III) 2016-17

COMPUTER BASED NUMERICALAND STATISTICAL TECHNIQUES

Time : 3 Hours

Note: Attempt all Sections. If require any missing data; then choose suitably.

Section-A

1. Attempt all questions in brief. $(10 \times 2=20)$
a) Discuss the significant digits with suitable example.
b) The error in the measurement of the area of a circle is not allowed to exceed 0.1%. How accurately should the diameter be measured?
c) Define testing of Statistical hypothesis.
d) Express $1+x-x^{2}+x^{3}$ as sum of Chebyshev polynomial.
e) What is the condition of natural spline.
f) Write the normal equation for a $y=a+b x+c x^{2}$
g) Write a short note on floating point arithmetic.
h) Prove that $\mu \delta=\frac{1}{2}(\Delta+\nabla)=\frac{\Delta E^{-1}}{2}+\frac{\Delta}{2}$
i) Determine the condition number of the matrix $\left[\begin{array}{ccc}2 & -1 & 1 \\ 1 & 0 & 1 \\ 3 & -1 & 4\end{array}\right]$ using the maximum absolute row sum norm.
j) Differentiate between ill conditioned and well conditioned methods.

Section - B

2. Attempt three questions from this section $(3 \times 10=30)$
a) Use synthetic division and perform two interations for the Birge-Vieta method to find the smallest positive root of the equation
$x^{4}-3 x^{3}+3 x^{2}-3 x+2=0$. Use the initial approximation $P_{0}=0.5$.
b) Write down the computer algorithms of least square curve fitting.
c) Derive the formula for error analysis of trapezoidal rule. If $I=\int_{0}^{1} e^{-x^{2}} d x$, then estimate I using the Trapezoidal rule with the 10 subintervals. Find an error bound also.
d) Use Gauss-Elimination method to solve the following system of equations:

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

e) Use secant method to determine the root of the equation $\cos x-x e^{x}=0$. Choose suitable initial approximation.

Section-C

3. Attempt any one part of the following: $(1 \times 10=10)$
a) Find the condition for convergence of fixed point interation method. Find by fixed point iteration method, the real root of the equation $\sin x=10(x-1)$.
b) Define Aitken's Δ^{2} method. Find a real root of the equation $2 x-\log _{10} x=7$, correct to three decimal places using Aitken's Δ^{2} method and iteration method. Also show how the rate of convergence of Aitken's Δ^{2} method is rapid than iteration method.
4. Attempt any one part of the following: $(1 \times 10=10)$
a) Write the algorithm for Lagrange's interpolation formula. Determine the step size that can be used in the tabulation of $f(x)=\sin x$ in the interval $[0, \pi / 4]$ at equally spaced nodal points so that the truncation error of the quadratic interpolation is less than 5×10^{-8}
b) Obtain an approximation in the sense of the principle of least squares in the form of a polynomial of the degree 2 to the function $1 /\left(1+x^{2}\right)$ in the range $-1 \leq x \leq 1$.
5. Attempt any one part of the following: $(1 \times 10=10)$
a) Calculate $y^{\prime}(0.398)$ as accurately as possible using the table below and with the aid of the approximation $\mathrm{S}(\mathrm{h})$. Give the error estimate (the values in the table are correctly rounded.)

X:	0.398	0.399	0.400	0.401	0.402
$\mathrm{f}(\mathrm{x}):$	0.408591	0.409671	0.410752	0.411834	0.412915

b) Find a quadrature formula

$$
\int_{0}^{1} \frac{f(x) d x}{\sqrt{x(1-x)}}=\alpha_{1} f(0)+\alpha_{2} f\left(\frac{1}{2}\right)+\alpha_{3} f(1) \text { which is }
$$

exact for polynomials of highest possible degree.
Then use the formula on $\int_{0}^{1} \frac{d x}{\sqrt{x-x^{3}}}$ and compare with the exact value.
6. Attempt any one part of the following: $(1 \times 10=10)$
a) Apply Runge-Kutta method to find an approximate value of y for $x=0.2$ and $x=0.4$ if $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$
b) Solve by successive over relaxation method, the equations.

$$
\begin{aligned}
& 10 x-2 y-2 z=6 \\
& -x+10 y-2 z=7 \\
& -x-y+10 z=8
\end{aligned}
$$

7. Attempt any one part of the following: $(1 \times 10=10)$
a) Evaluate
$I=\int_{0}^{1} \frac{d x}{2 x^{2}+2 x+1}$, using the Lobatto 3 point and
Radau 3-point formula. Compare with the exact solution.
b) i) A random sample of 900 members has a mean 3.4 cms . Can it be reasonably regarded as a sample from a large population of mean 3.2 cms and S.D. 2.3 cms .
ii) Find a uniform polynomial approximation of degree four or less to e^{x} on $[-1,1]$ using Lanczos economization with a tolerance of $\varepsilon=0.02$
