Printed Pages: 7

NEC - 309

B.TECH.

Regular Theory Examination (Odd Sem - III),2016-17

DIGITAL LOGIC DESIGN

Time : 3 Hours

Max. Marks : 100

Note: Attempt All sections. If require any missing data: then choose suitably.

Section - A

- 1. Attempt all questions in brief. $(10 \times 2=20)$
 - a) Perform 2's complement subtraction of 010110-100101.
 - b) What is the feature of gray code?
 - c) Write the logic equation and draw the internal logic diagram for a 4 to 1 mux.
 - d) What is a priority encoder?
 - e) List the major differences between PLA and PAL.

309/12/2016/15680

[P.T.O.

NEC - 309

- f) Define a Bus. What are the different types of buses?
- g) Give the comparison between combinational circuits and sequential circuits.
- h) What are the different types of flip-flop?
- i) Give the comparison between synchronous & asynchronous sequential circuits.
- i) When does race condition occur?

Section - B

2. Attempt any three of the following: $(3 \times 10=30)$

a) Reduce the Boolean function using k-map technique and implement using gates

 $f(w, x, y, z) = \sum m(0, 1, 4, 8, 9, 10)$ which has the

don't cares condition $d(w, x, y, z) = \sum m(2, 11)$

b) Implement the following multiple output combinational logic circuit using a 3 to 8 decoder.

i)
$$f_1 = \sum m(1,2,3,5,7)$$

309/12/2016/15680

NEC - 309

ii)
$$f_2 = \sum m(0,3,6)$$

iii)
$$f_3 = \sum m(0, 2, 4, 6)$$

- c) What is Ram? Explain the different types of RAM in detail.
- d) Realize

0

- i) A JK flip flop using SR flip flop.
- ii) A SR flip flop using NAND gates and explain its operation.

Section - C

3 Attempt any one part of the following (1×10=10)

- a) Detect and correct error (if any) in the following received even parity Hamming code word 00111101010.
- b) Minimize the given Boolean function using Quine Mc Clusky method

 $f(A, B, C, D) = \sum m(0, 1, 2, 4, 5, 8, 9, 11, 15)$ and implement the simplified function using NOR gates only.

[P.T.O.

4. Attempt any one part of the following $(1 \times 10 = 10)$

a) i) Obtain the simplified Boolean expression for the output F and G in terms of the input variables in the circuit of fig. 1

- ii) Implement the full adder and full subtractor using decoder.
- b) i) Design a combinational circuit that compares the magnitude of two 3 bit numbers and its output indicates whether A>B, A=B, A<B.
 - ii) Construct a BCD to excess 3 code converter with a 4 bit adder. What must be done to change the circuit to an excess 3 to BCD code converter?

5. Attempt any one part of the following (1×10=10)

- a) Design a combinational circuit using a ROM. The circuit accepts a three-bit number and outputs a binary number equal to the square of the input number.
- b) Draw a PLA circuit to implement the functions

$$f_1 = A'B + AC' + A'BC', f_2 = (AC + AB + BC)',$$

$$f_3 = BC + AC + A'BC'$$

6. Attempt any one part of the following $(1 \times 10 = 10)$

a) A sequential circuit has three flip flop A,B and C; one input x in and one output y out. The state diagram is shown in fig2. The circuit is to be designed by treating the unused states as don't-care conditions. Use T flip flop in the design.

309/12/2016/15680

3000

[P.T.O.

b) Design a 4 bit binary synchronous counter with D flips flop.

7. Attempt any one part of the following $(1 \times 10 = 10)$

a) Derive the transition table for the asynchronous sequential circuit shown in fig.3 determine the sequence of internal states Y_1Y_2 for the following sequence of input X_1X_2 : 00,10;,11,01,11,10,00.

b) An asynchronous sequential circuit is described by the excitation function

309/12/2016/15680

(6)

$$Y = x_1 x_2' + (x_1 + x_2') y$$
 and $z = y$

- i) Draw the logic diagram of the circuit
- ii) Drive the transition table and output map.