(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID: 2289954

 Roll No.

B.TECH.

Regular Theory Examination (Odd Sem - III),2016-17 DIGITAL LOGIC DESIGN

Time : 3 Hours
Max. Marks : 100

Note: Attempt All sections. If require any missing data: then choose suitably.
Section-A

1. Attempt all questions in brief.
a) Perform 2's complement subtraction of 010110100101.
b) What is the feature of gray code?
c) Write the logic equation and draw the internal logic diagram for a 4 to 1 mux.
d) What is a priority encoder?
e) List the major differences between PLA and PAL.
[P.T.O.
f) Define a Bus. What are the different types of buses?
g) Give the comparison between combinational circuits and sequential circuits.
h) What are the different types of flip-flop?
i) Give the comparison between synchronous \& asynchronous sequential circuits.
j) When does race condition occur?

Section-B

2. Attempt any three of the following: $\quad(3 \times 10=30)$
a) Reduce the Boolean function using k-map technique and implement using gates $f(w, x, y, z)=\sum m(0,1,4,8,9,10)$ which has the don't cares condition $d(w, x, y, z)=\sum m(2,11)$
b) Implement the following multiple output combinational logic circuit using a 3 to 8 decoder.
i) $\quad f_{1}=\sum m(1,2,3,5,7)$
ii) $\quad f_{2}=\sum m(0,3,6)$
iii) $\quad f_{3}=\sum m(0,2,4,6)$
c) What is Ram? Explain the different types of RAM in detail.
d) Realize
i) A JK flip flop using SR flip flop.
ii) A SR flip flop using NAND gates and explain its operation.

Section - C

3 Attempt any one part of the following ($1 \times 10=10$)
a) Detect and correct error (if any) in the following received even parity Hamming code word 00111101010.
b) Minimize the given Boolean function using Quine Mc Clusky method
$f(A, B, C, D)=\sum m(0,1,2,4,5,8,9,11,15) \quad$ and implement the simplified function using NOR gates only.

4. Attempt any one part of the following $(1 \times 10=10)$

a) i) Obtain the simplified Boolean expression for the output F and G in terms of the input variables in the circuit of fig. 1

Fig. 1
ii) Implement the full adder and full subtractor using decoder.
b) i) Design a combinational circuit that compares the magnitude of two 3 bit numbers and its output indicates whether $\mathrm{A}>\mathrm{B}, \mathrm{A}=\mathrm{B}, \mathrm{A}<\mathrm{B}$.
ii) Construct a BCD to excess 3 code converter with a 4 bit adder. What must be done to change the circuit to an excess 3 to BCD code converter?
5. Attempt any one part of the following $(1 \times 10=10)$
a) Design a combinational circuit using a ROM. The circuit accepts a three-bit number and outputs a binary number equal to the square of the input number.
b) Draw a PLA circuit to implement the functions

$$
\begin{aligned}
& f_{1}=A^{\prime} B+A C^{\prime}+A^{\prime} B C^{\prime}, f_{2}=(A C+A B+B C)^{\prime}, \\
& f_{3}=B C+A C+A^{\prime} B C^{\prime}
\end{aligned}
$$

6. Attempt any one part of the following $\quad(1 \times 10=10)$
a) A sequential circuit has three flip flop A, B and C ; one input x in and one output y out. The state diagram is shown in fig2. The circuit is to be designed by treating the unused states as don't-care conditions. Use T flip flop in the design.

Fig. 2
b) Design a 4 bit binary synchronous counter with D flips flop.
7. Attempt any one part of the following $(1 \times 10=10)$
a) Derive the transition table for the asynchronous sequential circuit shown in fig. 3 determine the sequence of internal states $\mathrm{Y}_{1} \mathrm{Y}_{2}$ for the following sequence of input $X_{1} X_{2}: 00,10 ; 11,01,11,10,00$.

Fig. 3
b) An asynchronous sequential circuit is described by the excitation function

$$
Y=x_{1} x_{2}^{\prime}+\left(x_{1}+x_{2}^{\prime}\right) y \text { and } z=y
$$

i) Draw the logic diagram of the circuit
ii) Drive the transition table and output map.

