(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID : 2289462

Roll No.

B.TECH.

Regular Theory Examination (Odd Sem - III), 2016-17 SWITCHING THEORY AND LOGIC DESIGN

Time : 3 Hours
Max. Marks: 100

Section-A

1. Attempt all parts. All parts carry equal marks. Write answer of each part in short
($10 \times 2=20$)
a) Convert (153.513) $)_{10}$ to an octal number.
b) Write the advantages of gray code over the straight binary number sequence.
c) Give the general procedure for converting a multilevel AND-OR diagram into an all NAND diagram.
d) Draw the logic diagram of half subtractor.
e) Specify the purpose of valid bit indicator in priority encoder.
f) Give the function table of SR latch.
g) Express the characteristic equation for the JK flipflop.
h) Compare mealy and Moore model of finite state machine.
i) The contents of a four bit register are initially 1011. The register is shifted six times to the right with serial input being 101111. What are the contents of the register after each shift?
j) Write the steps.that must be taken for the purpose of transferring a new word to be stored into memory.

Section-B

2. Attempt any five questions from this section $(5 \times 10=50)$
a) Simplify the Boolean function.

$$
F(w, x, y, z)=\sum(1,3,7,11,15)
$$

Which has the don't care conditions

$$
d(w, x, y, z)=\sum(0,2,5)
$$

b) Implement the following Boolean function with NAND gates

$$
F(x, y, z)=\sum(1,2,3,4,5,7)
$$

c) Design a full subtractor circuit with three inputs x, y $\mathrm{B}_{\text {in }}$ and two outputs Diff and $\mathrm{B}_{\text {out }}$. The circuit subtracts $x-y-B_{i n}$, where $B_{i n}$ is the input borrow, $B_{\text {out }}$ is the output borrow and Diff is the difference.
d) Draw the logic diagram of a two to four line decoder using NOR gates only.
e) Construct a JK flip-flop. using a D flip-flop. a two to four one line multiplexer and an inverter.
f) Design a hazard free circuit for the following Boolean function $F\left(x_{1}, x_{2}, x_{3}\right)=\sum(1,5,6,7)$
g) Describe the operation of four bit synchronous binary counter with neat sketch.
h) Draw the basic configuration of three PLDs. Section - C
Note: Attempt any two questions from this section.
($2 \times 15=30$)
3. Minimize the following switching function using QuineMcCluskey method

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\sum(0,1,2,8,9,15,17,21,24,25,27,31)
$$

4. Design a combinational circuit that converts a BCD code to Excess-3 code.
5. Implement the following four boolean functions with a PAL.

$$
\begin{aligned}
& W(A, B, C, D)=\sum(2,12,13) \\
& X(A, B, C, D)=\sum(7,8,9,10,11,12,13,14,15) \\
& Y(A, B, C, D)=\sum(0,2,3,4,5,6,7,8,10,11,15) \\
& Z(A, B, C, D)=\sum(1,2,8,12,13)
\end{aligned}
$$

