(Following Paper ID and Roll No. to be filled in your Answer Books)

Paper ID : 2289467

Roll No. \square

B.TECH.

Regular Theory Examination (Odd Sem - III), 2016-17 SIGNAL \& SYSTEM

Time : 3 Hours
Max. Marks : 100

SECTION-A

1. Attempt all parts. All parts carry equal marks. Write answer of each part in short.
($10 \times 2=20$)
a) Verify whether the given system described by the equation is linear and time-invariant. $x(t)=t^{2}$
b) Find the fundamental period of the given signal.

$$
x(n)=\sin \left(\frac{6 \pi n}{7}+1\right)
$$

c) What is the relationship between Z transform and Fourier transform.
d) State convolution property of Z transform.
e) Find the fourier transform of

$$
x(t)=\sin (\omega t) \cos (\omega t)
$$

f) Differentiate between CTFT \& DTFT.
g) Obtain the convolution of $x(t)=u(t)$ and $h(t)=1$ for $-1 \leq t \leq 1$
h) Determine the auto-correlation function of the given signal. $x(t)=e^{(-t)} u(t)$
i) What are the necessary conditions for an LTI system to be stable?
j) Write the S domain transfer function of a first order system.

SECTION-B

Note: Attempt any five questions from this section

$$
(5 \times 10=50)
$$

2. a) Given $x(\mathrm{t})=5 \operatorname{cost}, \mathrm{y}(\mathrm{t})=2 \mathrm{e}^{-\mathrm{t}}$, find the convolution of $x(t)$ and $y(t)$ using Fourier transform.
b) If $X(s)=\frac{2 s+3}{(s+1)(s+2)}$ find $\mathrm{x}(\mathrm{t})$ for
a) System is stable
b) System is causal
c) System is non causal
c) Determine the \mathbf{z}-transform of following sequences with ROC
i) $u[n]$
ii) $-u[-n-1]$
iii) $x[n]=a^{n} u[n]-b^{n} u[-n-1]$
d) Define invertible system and state whether the following systems are invertible or not
i) $y(n)=x(n)$
ii) $y(n)=x^{2}(n)+1$
e) Determine the impulse response function $\mathrm{h}(\mathrm{t})$ of an ideal BPF with passband gain of A and passband BW of B Hz centered on f_{0}. Hz and having a linear phase response.
f) A discrete time system is given as $y(n)=y^{2}(n-1)+x(n)$. A bounded input of $x(n)=2 n$ is applied to the system. Assume that the system is initially relaxed: Check whether the system is stable or unstable.
g) Differentiate between the following :
i) Continuous time signal and discrete time signal.
ii) Periodic and aperiodic signals
iii) Deterministic and random signals
h) Show that if $x_{3}(t)=a x_{1}(t)+b x_{2}(t)$

$$
\text { then } X_{3}(W)=a X_{1}(\omega)+b X_{2}(\omega)
$$

SECTION-C

Note: Attempt any two Questions from this section.

($2 \times 15=30$)
3. The accumulator is excited by the sequence $x[n]=n u[n]$.

Accumulator can be defined by following input and output relationship.
$y[n]=\sum_{k=-\infty}^{n} x(n)$
Determine its output under the condition:
i) It is initially relaxed
ii) Initially $y(-1)=1$
4. State and prove initial and final value theorem for z transform.
5. a) If Laplace transform of $\mathrm{x}(\mathrm{t})$ is $\frac{(s+2)}{\left(s^{2}+4 s+5\right)}$

$$
\begin{aligned}
& \text { Determine Laplace transform } \\
& y(t)=x(2 t-I) u(2 t-I)
\end{aligned}
$$

b) Use the convolution theorem to find the Laplace transform of

$$
y(t)=x_{1}(t) * x_{2}(t) \text {, if } x_{1}(t)=e^{-3 t} u(t) \text { and } x_{2}(t)=u(t-2)
$$

