Printed Pages: 4

NCS-302

(Following Paper ID and Roll No. to be filled in your Answer Books) Paper ID : 2012265 Roll No.

B.TECH.

Regular Theory Examination (Odd Sem-III), 2016-17

DISCRETE STRUCTURES AND GRAPH THEORY

Time : 3 Hours

Max. Marks : 100

SECTION-A

Attempt all parts. All parts carry equal marks. Write
answer of each part in short. $(10 \times 2=20)$

- 1. a) Let R be a relation on the set of natural numbers N, as $R = \{(x, y): x, y \in N, 3x + y = 19\}$. Find the domain and range of R. Verify whether R is reflexive.
 - b) Show that the relation R on the set Z of integers given by $R = \{(a,b): 3 \text{ divides } a b\}$, is an equivalence relation.
 - c) Show the implications without constructing the truth table $(P \rightarrow Q) \rightarrow Q \Rightarrow P \lor Q$.
 - d) Show that the "greater than or equal" relation (>=) is a partial ordering on the set of integers.

NCS-302

- e) Distinguish between bounded lattice and complemented lattice.
- f) Find the recurrence relation from $y_n = A2^n + B(-3)^n$.
- g) Define ring and give an example of a ring with zerodivisors.
- h) State the applications of binary search tree.
- i) Define Multigraph. Explain with example in brief.
- j) Let G be a graph with ten vertices. If four vertices has degree four and six vertices has degree five, then find the number of edges of G.

SECTION - B

Attempt any 5 questions from this section

 $(5 \times 10 = 50)$

- 2. Write the symbolic form and negate the following statements :
 - Everyone who is healthy can do all kinds of work.
 - Some people are not admired by everyone.
 - Everyone should help his neighbors, or his neighbors will not help him.
- 3. In a Lattice if $a \le b \le c$, then show that
 - a) $a \lor b = b \land c$
 - b) $(a \lor b) \lor (b \land c) = (a \lor b) \land (a \lor c) = b$

NCS-302

- 4. State and prove Lagrange's theorem for group. Is the converse true?
- 5. Prove that a simple graph with *n* vertices and *k* components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.

6. Prove by induction:
$$\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = \frac{n}{(n+1)}$$
.

- 7. Solve the recurrence relation $y_{n+2} 5y_{n+1} + 6y_n = 5^n$ subject to the condition $y_0 = 0, y_1 = 2$.
- 8. a) Prove that every finite subset of a lattice has an LUB and a GLB.
 - b) Give an example of a lattice which is a modular but not a distributive.
- **9.** Explain in detail about the binary tree traversal with an example.

SECTION - C

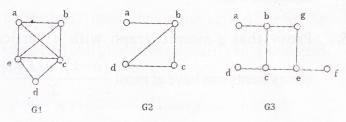
Attempt any 2 questions from this section.

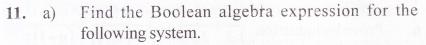
(2×15=30)

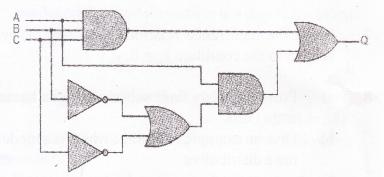
10. a) Prove that a connected graph G is Euler graph if and only if every vertex of G is of even degree.

b)

Which of the following simple graph have a Hamiltonian circuit or, if not a Hamiltonian path?







- b) Suppose that a cookie shop has four different kinds of cookies. How many different ways can six cookies be chosen?
- **12.** a) Prove that every cyclic group is an abelian group.
 - b) Obtain all distinct left cosets of $\{(0), (3)\}$ in the group $(Z_6, +_6)$ and find their union.
 - c) Find the left cosets of $\{[0], [3]\}$ in the group $(Z_6, +_6)$.

302/12/2016/15480