Printed Pages: 7	NAS-30
(Following Paper ID a An	and Roll No. to be filled in your aswer Book)
Paper ID : 2014073	Roll No.

B. TECH.

Regular Theory Examination, (Odd Sem-III) 2016-17

MATHEMATICS - III

Time : 3 Hours

Max. Marks : 100

SECTION-A

- 1. Attempt all parts of this question. Each question carries two marks. $(10 \times 2=20)$
 - a) Evaluate $\int_{|z|=\frac{1}{2}} \frac{e^z}{z^2+1} dz$
 - b) Find the residue of $f(z) = \cot z$ at its pole.
 - c) Find the Z-transform of the sequence $\{a_n\}$.
 - d) State the convolution theorem for inverse Z-transform.
 - e) Discuss in brief the types of correlation.
 - f) What do you understand by measures of Kurtosis, discuss in brief.

301/12/2016/49420

(1)

[P.T.O.

NAS-301

- g) Define order of convergence for finding out the root of an transcendental equation.
- h) For the data [a, f(a)], [a+h, f(a+h)] and [a+2h, f(a+2h)], find $\Delta^2 f(a)$.
- i) Define a diagonal system of simultaneous linear algebraic equations.

j) Write the formula for solving the differential

equation $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ by Runge-Kutta fourth order method.

SECTION-B

2. Attempt any three parts of the following:- $(3 \times 10 = 30)$

a) Use Calculus of Residue to evaluate the following integral

$$\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^2 + a^2\right) \left(x^2 + b^2\right)} \, dx$$

b) Find the Fourier transform of the following function defined for a > 0 by $f(t) = e^{-at^2}$

301/12/2016/49420

(2)

c) Find the coefficient of correlation (r) and obtain the equation to the lines of regression for the following data:

x 6 2 10 4 8

y 9 11 5 8 7

d) Using method of least squares, derive the normal equation to fit a parabola $y = a + bx + cx^2$ from the following data:

x 2 3 4 5 6

y 14 17 20 24 29

e) Describe Picard's method for solving differential equation and hence solve the differential equation.

 $\frac{dy}{dx} = 1 + xy$ up to third approximation, when y(0)=0

SECTION-C

3. Attempt any two parts of the following : $(2 \times 5 = 10)$

a) Find the values of C_1 and C_2 such that the function $f(z) = x^2 + c_1 y^2 - 2xy + i (c_2 x^2 - y^2 + 2xy)$ is analytic. Also find f(z).

301/12/2016/49420

(3)

[P.T.O.

b) Find the poles (with its order) and residue at each poles of the following function:

$$f(z) = \frac{1 - 2z}{z(z - 1)(z - 2)^2}$$

c) Find the Laurent series expansion of

$$f(z) = \frac{7z - 2}{z(z+1)(z+2)}$$
 in the region $1 < |z+1| < 3$

4. Attempt any two parts of the following:- $(2 \times 5 = 10)$

- a) Find the root of the equation $2x \log_{10} x = 7$ which lies between 3.5 and 4.0, using method of false position (five iterations only).
- b) Using Newton's forward interpolation formula, find a polynomial function for f(x) and hence evaluate f(0.5), from the following data:

x	0	1	2	. 3	4
f(x)	-1	0	13	50	123

c) Using Lagrange's method for interpolation, find y(10) from the following data:

x	5	6	9	11
у	12	13	14	16

(4)

301/12/2016/49420

[P.T.O.

5. Attempt any two parts of the following:- $(2 \times 5 = 10)$

a) Evaluate the following integral, using Simpson's three - eight rule:

$$\int_0^6 \frac{dx}{1+x^2}$$

Taking 12 intervals.

b) Apply Gauss-Seidal iteration method to solve the following equations (three iterations only)

20x + y - 2z = 17 3x + 20y - z = -182x - 3y + 20z = 25

c) Find $f^{1}(1.1)$ from the following data:

x	1.0	1.2	1.4	1.6	1.8	2.0
f(x)	0.0	0.12	0.55	1.29	2.43	4.00

6. Attempt any two parts of the following : $(2 \times 5 = 10)$

a) If for two random variables, x and y with same mean, the two regression lines are

301/12/2016/49420

1

(5)

y = ax + b and $x = \alpha y + \beta$, then show that $\frac{b}{\beta} = \frac{1-a}{1-\alpha}$

Also find the common mean.

- b) The first four moments of a distribution about the value 4 of the variable are -1.5, 17, -30 and 108. Find the moments about the origin.
- c) Out of 800 families with 5 children each, how many families would be expected to have
 - i) Three boys and two girls
 - ii) At the most two girls.

Assume that probabilities for boys and girls are equal

7. Attempt any two parts of the following:- $(2 \times 5 = 10)$

a) Find the inverse Z-transform of

$$Z(z) = \frac{z}{z-1}, \quad |z| > 1$$

b) Find the finite Fourier sine transform of

 $f(x) = x(\pi - x) in \quad 0 < x < \pi$

301/12/2016/49420

(6)

c) Using Z-transform, solve the following difference equation.

 $u_{n+2} + 2u_{n+1} + u_n = n$ with $u_0 = u_1 = 0$

chochocho

(7)

301/12/2016/49420