Printed pages: 2 Roll No.

Sub Code: AS-303

Paper ID: 9 0 2 6

B-TECH

(SEM.III) THEORY EXAMINATION 2017-18

Mathematics-III

Time: 3 Hours

[Total Marks: 100]

2x10 = 20

10x3 = 30

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

Attempt all questions in brief. 1.

- Define the Z-transform. a.
- Prove that $u(x, y) = e^x \cos y$, is harmonic function. b.
- Prove Cauchy-Riemann equation in Polar form. c.
- The first-three central moments of a distribution are 0, 2.5, 0.7. Find the value of the moment d. coefficient of skewness.
- Show that order of Convergence of Bisection Method is linear i.e. 1. e.
- f. Prove that $E=1+\Delta$
- Differentiate between Skewness & Kurtosis. g.
- Use Piccards Method to obtain y for x=0.1 h.

Given that $\frac{dy}{dx}=3x+y^2$, y=1, when x=0

Fit the equation of Straight line from the following data: i.

x:	1	2	3	4	5
v:	14	27	40	55	68

j.

SECTION-B

Find the Third divided difference with arguments 2, 4, 9, 10 of the function $f(x)=x^3-2x$.

Attempt any three of the following: 2.

Show that the function f(z) defined by $f(z) = \frac{x^3 y^5 (x + iy)}{x^6 + y^{10}}, z \neq 0, f(0) = 0$, is not analytic at origin a.

even though it satisfies Cauchy-Riemann equations at origin.

In a partially destroyed Laboratory record of an analysis of correlation data, the following results are b. legible Varx=9 Regresion equation are-

$$8x-10y = -66$$

 $40x-18y = 214$

Find :

(I) Mean value of x and y (II) Standard Deviation of y (III) Correlation Coefficient between x & y.

c. Find the Fourier transform of $F(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$.

d. Solve the following system of linear equations by Gauss Sieddel Method:

5x + 2y + z = -12; -x + 4y + 2z = 20; 2x - 3y + 10z = 3

the cubic pol	ynomial wh	ich takes th	e following va	alues:
x	0	1	2	3
у	1	2	1	10

SECTION-C

3. Attempt any *one* part of the following.

e.

a. State and prob Cauchy's Integral formula.

b. Using complex variable techniques evaluate the real integral $\int_{0}^{2\pi} \frac{\sin 2\theta d\theta}{5 - 4\cos \theta}$

4. Attempt any *one* part of the following.

- a. The distribution of the number of road accidents per day in a city is Poisson with mean 4. Find the number of days out of 100 days when there will be
 (i) no accident
 (ii) at least 2 accidents
 (iii) at most 3 accidents
 (iv) between 2 and 5 accidents.
- b. Assuming that half the population of a town consumes chocolates and 100 investigators each take 10 individuals to see whether they are consumers. How many investigators would be needed to report that 3 people or less were consumers?

5. Attempt any *one* part of the following.

a. State Lagrange's interpolation formula. Find the cubic Lagrange's interpolating polynomial from the following data:

x:	3	2	1	-1
y:	3	12	15	-21

b. Use Newton's Raphson method to solve the equation

 $\cos x - x e^{x} = 0$ correct to four decimal places.

6. Attempt any *one* part of the following.

- a. Given that $\frac{dy}{dx} = 1 + xy$; y(0) = 2, Using Runge-Kutta Fouth order method, find y(0.1), y(0.2).
- b. The distance covered by an athlete for the 50 metre race is given in the following table:

	Time(sec.) :	0	1	2	3	4	5	6
	Distance(metre):	0	2.5	8.5	15.5	24.5	36.5	50
D	etermine the speed o	f the a	thlete a	at t=5 se	ec.			

7. Attempt any *one* part of the following.

- a. Use finite Fourier Transformation to solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with the conditions (i) u(0,t) = 0 (ii) $u(\pi,t) = 0$ (iii) u(x,0) = 2x where $0 < x < \pi$.
- b. Using the Z-transform solve the following difference equations:

 $6y_{k+2} - y_{k+1} - y_k = 0$ given that $y_{(0)} = 0, y_{(1)} = 1$.

10x1 = 10

10x1 = 10

10x1 = 10

10x1 = 10

10x1 = 10