Paper ID: 9026

B-TECH
 (SEM.III) THEORY EXAMINATION 2017-18
 Mathematics-III

Time: 3 Hours
[Total Marks: 100]
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

1. Attempt all questions in brief.
$2 \times 10=20$
a. Define the Z-transform.
b. Prove that $u(x, y)=e^{x} \cos y$, is harmonic function.
c. Prove Cauchy-Riemann equation in Polar form.
d. The first-three central moments of a distribution are $0,2.5,0.7$. Find the value of the moment coefficient of skewness.
e. Show that order of Convergence of Bisection Method is linear i.e. 1 .
f. Prove that $E=1+\Delta$
g. Differentiate between Skewness \& Kurtosis.
h. Use Piccards Method to obtain y for $x=0.1$

Given that $\frac{d y}{d x}=3 \mathrm{x}+\mathrm{y}^{2}, \mathrm{y}=1$, when $\mathrm{x}=0$
i. Fit the equation of Straight line from the following data:

$x:$	1	2	3	4	5
$y:$	14	27	40	55	68

j. Find the Third divided difference with arguments $2,4,9,10$ of the function $f(x)=x^{3}-2 x$.

SECTION-B

2. Attempt any three of the following:
a. Show that the function $\mathrm{f}(\mathrm{z})$ defined by $f(z)=\frac{x^{3} y^{5}(x+i y)}{x^{6}+y^{10}}, z \neq 0, f(0)=0$, is not analytic at origin even though it satisfies Cauchy-Riemann equations at origin.
b. In a partially destroyed Laboratory record of an analysis of correlation data, the following results are legible Varx $=9$ Regresion equation are-

$$
\begin{aligned}
& 8 x-10 y=-66 \\
& 40 x-18 y=214
\end{aligned}
$$

Find :
(I) Mean value of x and y (II) Standard Deviation of y (III) Correlation Coefficient between $x \& y$.
c. Find the Fourier transform of $F(x)=\left\{\begin{array}{ll}1, & |x|<a \\ 0, & |x|>a\end{array}\right.$.
d. Solve the following system of linear equations by Gauss Sieddel Method:

$$
5 x+2 y+z=-12 ;-x+4 y+2 z=20 ; 2 x-3 y+10 z=3
$$

e. Find the cubic polynomial which takes the following values:

x	0	1	2	3
y	1	2	1	10

SECTION-C

3. Attempt any one part of the following.
a. State and prob Cauchy's Integral formula.
b. Using complex variable techniques evaluate the real integral $\int_{0}^{2 \pi} \frac{\sin 2 \theta d \theta}{5-4 \cos \theta}$
4. Attempt any one part of the following.
$10 \times 1=10$
a. The distribution of the number of road accidents per day in a city is Poisson with mean 4 . Find the number of days out of 100 days when there will be
(i) no accident
(ii) at least 2 accidents
(iii) at most 3 accidents
(iv) between 2 and 5 accidents.
b. Assuming that half the population of a town consumes chocolates and 100 investigators each take 10 individuals to see whether they are consumers. How many investigators would be needed to report that 3 people or less were consumers?
5. Attempt any one part of the following.
a. State Lagrange's interpolation formula. Find the cubic Lagrange's interpolating polynomial from the following data:

$\mathrm{x}:$	3	2	1	-1
$\mathrm{y}:$	3	12	15	-21

b. Use Newton's Raphson method to solve the equation
$\operatorname{Cos} \mathrm{x}-\mathrm{x} \mathrm{e}^{\mathrm{x}}=0$ correct to four decimal places.
6. Attempt any one part of the following.
a. Given that $\frac{d y}{d x}=1+x y ; y(0)=2$, Using Runge- Kutta Fouth order method, find $y(0.1), y(0.2)$.
b. The distance covered by an athlete for the 50 metre race is given in the following table:

Time(sec.) :	0	1	2	3	4	5	6
Distance(metre):	0	2.5	8.5	15.5	24.5	36.5	50

Determine the speed of the athlete at $t=5 \mathrm{sec}$.
7. Attempt any one part of the following.
a. Use finite Fourier Transformation to solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with the conditions
(i) $u(0, t)=0$
(ii) $u(\pi, t)=0$
(iii) $u(x, 0)=2 x$ where $0<x<\pi$.
b. Using the Z-transform solve the following difference equations:
$6 y_{k+2}-y_{k+1}-y_{k}=0$ given that $y_{(0)}=0, y_{(1)}=1$.

