Roll No. \square

B TECH

(SEM-III) THEORY EXAMINATION 2018-19 DISCRETE MATHMATICS
Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
a) Define sets and it types.
b) Define Proposition with example.
c) Let A and B be sets. Show that $\mathrm{A} * \mathrm{~B} \neq \mathrm{B} * \mathrm{~A}$. Under What Condition $\mathrm{A} * \mathrm{~B}=\mathrm{B} * \mathrm{~A}$
d) Prove for any two sets A and B that, (A U B) $=A \cdot \cap B$
e) Explain Ring with the help of example.
f) State and prove pigeonhole principle
g) Define transitive closure with suitable example.

SECTION B

2. Attempt any three of the following:
a) Construct the truth table for:
$[(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow R) \rightarrow R]$
Also show that the above statement is a tautology by developing a series of logical equivalences.
b) Define preorder, inorder and postorder tree traversal. Give an example of preorder, postorder and inorder.
c) Solve $a_{n}+3 a_{n-1}-10 a_{n-2}=n^{2}+n+1$.
d) Prove that partially ordered set D_{15} under the relation ' Divides' is a lattice.
e) If $2 n+{ }^{1} P_{n-1}: 2 n-1{ }_{P_{n}}=3.5$, find the value of n.

SECTION C

3. Attempt any one part of the following:
a) Give an example of set x such that $<\mathrm{P}(\mathrm{X}), \cong>$ is a totally ordered set.
b) In a group of 600 people 350 can speak English only and 170 can speak Hindi only.
i. How many can speak Hindi?
ii. How many can speak Hindi and English both?
4. Attempt any one part of the following:
a) Discuss the Algebraic Structure and its properties in detail.
b) Let $G=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}=e\right\}$. Find the order of every element.
5. Attempt any one part of the following:
a) Define Poset. What is totally or linearly ordered set?
b) Draw the Hasse diagram of $[\mathrm{p}(\mathrm{a}, \mathrm{b}, \mathrm{c}), \subseteq]$. Find greatest element, least element, minimal element and maximal element.
6. Attempt any one part of the following:
a) Show the following implications without constructing the truth tables:
I. $(\mathrm{P} \wedge \mathrm{Q}) \Longrightarrow(\mathrm{P}->\mathrm{Q})$
II. $(\mathrm{P}->\mathrm{Q} \Rightarrow \mathrm{P})->(\mathrm{P} \wedge \mathrm{Q})$
b) Define free and bound variable. Also explain the multiple quantifiers with the example.
7. Attempt any one part of the following:

$$
7 x^{1}=7
$$

a) Define permutation and combination with the help of any example; also explain the difference between them.
b) Solve the recurrence Relation: $a_{r}+4 a_{r-2}+4 a_{r-2}=r^{2}$.

