RAJESH KUMAR TEWARI | 24-Dec-2018 08:59:56 | 139.5.198.250

P

Printed Pages: 02		Subject Code: REC301							
Paper Id 1 3 0 3 0 1	Roll No.								
В	ТЕСН						<u> </u>		1
(SEM-III) THEORY	EXAMINATION	N, 2018- 1	19						
DIGITAL	LOGIC DESIGN								
Time: 3 Hours			Ι	Max.	Mark	s: 70			
Note: Be precise in your answer. In case of	^f numerical problen	n assume	e data	ı wh	erever	not			
provided.	*								
SE	CTION-A								
1 Attempt all of the following questions:					(2)	<7=1	4)		
(a) What is modulus of a counter?	10115.				(2)	·/-1-	T)		
(a) What is modulus of a counter? (b) How many flip flops are required to de	sign Mod 5 Ring cou	inter and	Mod	5 101	nson	count	or?		
(a) Determine the value of hase x if: (103	$(623)_{-}$	inter and	wiou-	5 101		Jound			
(d) Write the advantage of Gray code over	$y_x = (023)_8$	umbar ca	allona	0					
(a) What do you mean by fan out and fan	ine straight offiary fr	unider se	quene	С.					
(f) Define cyclic codes	111 :								
(a) What is race around condition?									
(g) what is face around condition:	CTION D								
					(7.)	, ,	11		
2. Attempt any three of the following	g questions:	2			(/*	3 = 2	(1)		
(a) Minimize the following Boolean function $\Sigma(A, B, C, D) = \Sigma(A, 5, 7, 0, 12, 14, 15)$	ion using K- map.	X .							
$F(A, B, C, D) = \sum (3,4,5,7,9,13, 14,15)$		X .							
(b) Minimize the following using Quine- \mathbb{N}	Accluskey method: $\Sigma 1 (0, 11, 21)$							C	
$F(A, B, C, D) = \sum (0, 1, 9, 15, 24, 29, 1)$	$30) + \sum d(8, 11, 31)$						4	シ)
(c) Write short notes on priority encoder.							0	Ś	
(d) Implement the following Boolean func	tion :					C	ふ・		
$F(A, B, C, D) = \sum (0, 1, 3, 4, 7, 8, 9)$, 11, 14, 15) using					.0	0		
(i) $4:1 \text{ MUX}$	\mathcal{O}					\checkmark	'		
$(\mathbf{i}) 2:1 \text{ MUX}$					5	٠			
(e) Design Binary code to Gray code conv	erter.				0.~				
SEC	CTION - C			$\mathbf{\hat{C}}$)		_`		
3. Attempt any one of the following	questions:			~~	(7×	1 = 7)		
(a) (i) Draw a BCD adder circuit and expla	ain its working.		\sim						
(ii) Convert the SR Flip Flop to JK Flip	p Flop.		V.	Ť					
(b) What do you mean by shift register? W	hat is the need of shi	ift registe	r? Dra	aw ai	nd exp	lain			
bidirectional shift register.									
*	0								
4. Attempt any one of following que	stions:)			(7×	1 = 7)		
(a) (i) Design a modulo-4 UP/DOWN cour	nter using JK flip floj	p.							
(ii) Design a ripple decade counter usir	ng JK flip flop.								
(b) (i) What is critical race and non- critical	al race? How can they	y be avoid	ded?						
(ii) Describe the hazards in digital circu	uits. How are these re	emoved?	Desig	n a h	azards	free			
circuit of the following Boolean function	on:								
$F(A, B, C) = \sum m(1, 2,, M)$	3, 5)								
	7								
5. Attempt any one of following que	stions:				(7×	1 = 7	')		

- (a) (i) Describe the circuit and performance of CMOS inverter and state the characteristics of CMOS.
 - (ii) Differentiate between PLA and PAL. Realize the full adder circuit using PAL.
- (b) (i) Discuss the concept of field programmable gate array (FPGA). Discuss the various structures of FPGA.
 - (ii) Tabulate the truth table for 8×4 ROM that implements the Boolean function:

A(x, y, z) = $\sum (1, 2, 4, 6)$ B(x, y, z) = $\sum (0, 1, 6, 7)$ C(x, y, z) = $\sum (2, 6)$ D(x, y, z) = $\sum (1, 2, 3, 5, 7)$

6. Attempt any one of following questions:

(a) An asynchronous sequential logic circuit is described by the following excitation and output function

$$y = X_1X2 + (X1 + X2) Y$$

Z = v

- (i) Draw the logic diagram of the circuit.
- (ii) Derive the transition table and output map
- (iii) Describe the behavior of the circuit.
- (b) (i) The code 101101010 is received, correct any errors. There are four parity bits and odd parity is used.
 - (ii) Draw a full subtractor circuit using NAND gate.

7. Attempt any one of following questions:

 $(7 \times 1 = 7)$

 $(7 \times 1 = 7)$

(a) Drive the state table and state diagram for the Sequential circuit shown in fig,

(b) Draw the reduced state table and reduced state diagram for the state table given below:

