\square

B TECH
 (SEM III) THEORY EXAMINATION 2018-19
 MATHEMATICS-III

Time: 3 Hours
Total Marks:70
Notes: Assume any Missing Data.

SECTION - A

1. Attempt ALL parts of the following:
a) The function $f(x)=e^{x}(\cos y+i \sin y)$ is holomorphic or not.
b) Find the residue of $\frac{z^{2}}{(z-1)(z-2)^{2}}$ at pole $z=2$.
c) Formula of Measure of Kurtosis $\beta_{2}=$
d) The first three central moments of a distribution are $0,15,-31$. Find the moment coefficient of skewness.
e) Obtain the function whose first difference is $9 x^{2}+11 x+5$.
f) Find the normal equation of a curve $y=a x+b x^{2}$
g) Let $f(z)=u(r, \theta)+i v(r, \theta)$ be an analytic function. If $u=-r^{3} \sin 3 \theta$, then find v.

SECTION - B

2. Attempt any THREE parts of the following:
$3 \times 7=21$
a) From the following table of values of x and y, obtain $\frac{d y}{d x}$ for $x=1.2,2.2,1.6$.

$x:$	1.0	1.2	1.4	1.6	1.8	2.0	2.2
$y:$	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

b) Using Runga-Kutta method of fourth order, find $y(0.8)$ correct to 4 decimat places if $\frac{d y}{d x}=y-$ $x^{2}, y(0.6)=1.7379$, taking $h=0.1$.
c) Using complex integration method, evaluate $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$.
d) The equations of two regression lines, obtained in a correlation analysis of 60 observations are:
$5 x-6 y=24,768 x-100 y=3608$. What is the correlation coefficient? Show that the ratio of coefficient of variability of x to that of y is $\frac{5}{24}$. What is the ratio of variances of x and y ?
e) The pressure of the gas corresponding to various volumes V is measured, given by the following data:

$\mathrm{V}\left(\mathrm{cm}^{3}\right)$	50	60	70	90	100
$\mathrm{P}\left(\mathrm{kg} \mathrm{cm}^{-2}\right)$	64.7	51.3	40.5	25.9	78

SECTION - C

3. Attempt any TWO parts of the following:
a) Find the unique polynomial $P(x)$ of degree 2 such that: $P(1)=1, P(3)=27, P(4)=64$, use Lagrange method of interpolation.
b) Using Simpson's $3 / 8{ }^{\text {th }}$ rule on integration, evaluate $\int_{0}^{6} \frac{1}{1+x} d x$
c) Expand $\frac{1}{z^{2}-3 z+2}$ in the region $1<|z|<2$.
4. Attempt any TWO parts of the following:
a) If the probability of hitting a target is 10% and 10 shots are fired independently. What is the probability that the target will be hit at least once?
b) A die is thrown 276 times and the results of these throws are given below:

No. appeared on the die	1	2	3	4	5	6
Frequency	40	32	29	59	57	59

Test whether the die is biased or not.[Tabulated value of χ^{2} at 5% level of significance for 5 degree of freedom is 11.09]
c) By Residue method, find the inverse Z-transform of $\frac{z}{z^{2}+7 z+10}$
5. Attempt any TWO parts of the following:
a) The following data regarding the heights (y) and weights (x) of 100 college students are given:

$$
\sum x=15000, \sum x^{2}=2272500, \sum y=6800, \sum y^{2}=463025, \sum x y=1022250
$$

b) Solve $x^{3}-5 x+3=0$ by using Regula-Falsi method correct up to four decimal places.
c) From the table, estimate the number of students who obtained marks between 40 and 45 .

Marks:	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No.of Students:	31	42	51	35	31

6. Attempt any $\boldsymbol{T} W O$ parts of the following:
a) Find the residue of $f(z)=\frac{z^{3}}{(z-1)^{4}(z-2)(z-3)}$ at its pole and hence evaluate $\int_{C} f(z) d z$, where C is the circle $|z|=5 / 2$
b) Determine the largest Eigen value and corresponding eigen vector of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ till three approximation.
c) Verify Cauchy theorem by integrating $e^{i z}$ along the boundary of the triangle with the vertices at the points $1+i,-1+i$ and $-1-i$.
7. Attempt any TWO parts of the following:
a) Use Picard's method to obtain y for $x=0.2$. Given: $\frac{d y}{d x}=x-y$ with initial condition $y=1$ when $x=0$ correct up to four decimal places.
b) In a normal distribution, 31% of the items are under 45 and 8% are over 64 . Find the mean and standard deviation of the distribution. It is given that if $f(t)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} e^{-\frac{1}{2} x^{2}} d x$ then $f(0.5)=$ $0.19, f(1.4)=0.42$
c) Prove that $h D=-\log (1-\nabla)=\sin h^{-1}(\mu \delta)$
