Sub Code:KEE303

120323 Paper Id:

Roll No:

B TECH (SEM-III) THEORY EXAMINATION 2019-20 **BASIC SIGNALS & SYSTEMS**

Time: 3 Hours

Total Marks: 100

 $2 \ge 10 = 20$

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief. 1.

Qno.	Question	Marks	С	
-			0	
a.	Define signal. What are various types of signals?	2	1	
b.	Differentiate between Invertible and Non-Invertible system.	2	1	
c.	State and explain sampling theorem.	2	2	
d.	State and prove time shifting property of Fourier Series.	2	2	
e.	Deduce inverse laplace transform of 1/s(s+4).	2	3	
f.	Drive Laplace transform of sinot.	2	3	
g.	What is the significance of state variable?	2	4	
h.	What is the condition for the stability of a system?	2	4 0	
i.	Drive time reversal property of z-transform.	2	5	
j.	Find the z transform of $f(nT) = e^{-anT}$; $a > 0$, $n \ge 0$	2	3	
		6.	,	
	SECTION B	0.5		
		5		

ION B SE(

2.	Attempt any <i>three</i> of the following:	10X3=.	30
Qno.	Question	Marks	CO
a.	find even and odd component of the following signals (i) $x(t) = cost + sint + cost sint$ (ii) $x(n) = \{1,2,1,4,5,0,3\}$	10	1
b.	Obtain the trigonometric Fourier series for the half wave rectified sine wave.	10	2
c.	Calculate the Laplace transform for the function $F(t) = e^{-at}$ sinhbt.	10	3
d.	Obtain the state model for the electric network shown in figure. Select i _L and Vc as state variables.	10	4
e.	State and prove the time delay theorem and Parsavel's theorem of Z-transform.	10	5

Printed Page 1 of 3

Printed Page	e 2 of 3					5	Sub	Cod	e:K	EE3	603
Paper Id:	120323	Roll No:									

SECTION C

3. Attempt any one part of the following:

10X1=10

Qno.	Question	Marks	CO
a.	Sketch the function	10	1
	(i) $x(t)=u(t)+2u(t)+3u(t-4)-u(t-5)$		
	(ii) $x(t) = r(t+1)-r(t)+r(t-2)$		
b.	Obtain F-V and F-I analogous system of mechanical system shown in figure.	10	1
4		4.0	*

Attempt any one part of the following: 4.

10X1=10

Qno.	Question	Marks	CO
a.	Explain the trigonometric and exponential form of Fourier series	10	2
	representation of periodic signal. Find the Fourier transform of given		1
	signal shown in fig.		9
	A Contraction of the second se	-	SO 1
		N	う
	le le la	6.	
		X.	
		5	
	CX.		
b.	State and prove duality property of Fourier transform. Find the inverse	10	2
	fourier transform of,		
	$X(j\omega) = \begin{cases} 2\cos\omega, \ \omega < \pi \\ 0, \qquad \omega > \pi \end{cases}$		
	$\Lambda(\omega) = \{0, \omega > \pi$		
5	Attempt any are part of the following:	10	

Attempt any one part of the following: 5.

10X1=10

5.	Attempt any <i>one</i> part of the following: 10X1=	10	
Qno.	Question	Marks	CO
a.	For a transfer function H (s) = $(s+10)/(s^2 + 3s + 2)$. Find the response	10	3
	due to input $x(t) = Sin2(t) u(t)$.		
b.	Find the inverse Laplace transform of given function by using	10	3
	convolution theorem (i) $x(s) = 1/(s^2+a^2)^2$ (ii) $x(s) = s/(s+1)(s+2)$		
6.	Attempt any <i>one</i> part of the following: 10X1=	10	

6. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Consider the state equation shown below.	10	4
	$\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$		
	Determine the state transition equation $x(t)$ when the input is unit step and $x_1(0)=1$, $x_2(0)=2$.		
b.	Explain state transition matrix, its physical significance and properties.	10	4

2 | Page

Printed Page	e 3 of 3					S	ub (Cod	e:K	EE3	03
Paper Id:	120323	Roll No:									

7.	Attempt any <i>one</i> part of the following: 10X1=	10	
Qno.	Question	Marks	CO
a.	State and prove time shifting property of Z-transform. Also find the inverse Z-transform of given function using convolution theorem. $x_{1}(z) = \frac{1}{1 - az^{-1}}, ROC : [z] > [a]$ $x_{2}(z) = \frac{1}{1 - z^{-1}}, ROC : [z] > [1]$	10	5
b.	For the discrete system described by the difference equation y(n) = 0. 6y(n-1)-0.08y(n-2)+x(n). Determine: (i)The unit sample response sequence, h(n), (ii)The step response.	10	5

RAJESHKUMAR 10-Dec.2019.09:02:301 139:5.198.30