Printed Page 1 of 1 Sub Co		Sub Code: KEE301
Pape	er Id: 120321 Roll No:	
	B.TECH (SEM III) THEORY EXAMINATION 2019-20 ELECTROMAGENETIC FIELD THEORY	
Time: 3 Hours Note: 1. Attempt all Sections. If require any missing data; then choose suitably. SECTION A		
1.	Attempt all questions in brief.	$2 \times 10 = 20$
a.	Explain the significance of continuity equation in a good conductor.	
b.	Explain parameters of a transmission line.	
c.	Explain Ampere's circuital law for magneto statics.	
d.	Explain relaxation time constant.	
e.	Whywork done on a charge is zero when it is moved in a close path.	
f.	Explain Gauss's law for electrostatics.	
g.	Explain behaviour of a conductor at high frequency.	
h.	Explain refraction coefficient and reflection time constant in contest to EM way	ve propagation.
i.	Explain Poynting vector.	
j.	Write an equation for an EM wave propagating in a conductor.	
SECTION B		
2.	Attempt any three of the following:	10x3=30
a.	Convert a point P (4,-3, 6) and a vector $\mathbf{R} = \mathbf{z} \mathbf{a_x} + \mathbf{y} \mathbf{a_z}$ into cylindrical co-ord	
b.	Derive an expression for electric field intensity in space due to infinite length. Charged wire.	
c.	Derive an expression for magnetic field intensity in space due to current shed density $\mathbf{K}\mathbf{a}_x$ A/m.	et having current
d.	Derive expressions of Voltage and Current in a Transmission Line.	700
e.	Write and explain all forms of all Maxwell's equation in detail.	6
	SECTION C	0.:
3.	Attempt any one part of the following:	10 x 1= 10
b.	Explain and prove Stroke's theorem. Explain all possible forms of surface vector, line vector and volume integsystem.	gral in Spherical
4.	Attempt any one part of the following:	10 x 1= 10
a.	Derive an expression for capacitance of a spherical shaped capacitor.	10 X 1- 10
b.	Derive and explain Boundary conditions for static electric fields.	
5.	Attempt any one part of the following:	10 x 1= 10
a.	Derive an expression for magnetic field of a coaxial cable.	
b.	Explain Biot Savert's law for magnetic fields. How this concept can be us Magnetic field in space due to a close loop current carrying wire.	sed to determine
6.	Attempt any one part of the following:	10 x 1= 10
a.	Explain the concept of Displacement constant in an electrical circuit. Als condition when conduction current becomes equal to displacement current.	so determine the
b.	Derive and explain differential form of Faraday's law of electromagnetic income.	duction in vector
7.	Attempt any one part of the following:	10 x 1= 10
a.	Derive all expressions of a EM Wave like attenuation constant, phase const	tant and intrinsic
h	impedance when it is propagating through a free space.	namiagion line
b.	Derive an expression for characteristic impedance, input impedance of a trans	ismission line.