B.TECH (SEM-III) THEORY EXAMINATION 2019-20 NETWORK ANALYSIS & SYNTHESIS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief. 2 x	10 = 20
Qno.	Question	Marks
a.	Explain the concept of Complex Frequency.	2
b.	Define "Transfer function" of a network.	2
c.	State two properties of the R-C driving point Impedance function.	2
d.	Find the Laplace transform of	2
	$\mathbf{x}(t) = e^{-at} \sin \omega_o t$	
e.	Find Current in 10ohm resistor as shown in fig:	2
	$\begin{array}{c} 10 \Omega \\ \end{array}$ $2 A \qquad \begin{array}{c} 5\Omega \\ \end{array}$ $2 \Omega \qquad \begin{array}{c} \end{array}$	
f.	Draw the Dual Circuit of Parallel RLC circuit with Current Source.	2
g.	What are the Dependent & Independent terms in the Z- parameter?	2
h.	State Compensation Theorem.	20,0
i.	Give examples of Active & Passive elements in a Network.	2
j.	Draw the Frequency Resonance Curve of Parallel Resonance R-L-C Circuit.	2

SECTION B

2. Attempt any three of the following:

Qno.	Question	Marks
a.	Find Y and Z parameters of the networks as shown in fig $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10
b.	Explain Low pass Filter, High Pass Filter, Band Pass Filter, Band Reject Filter.	10
c.	Find the current i_2 for $t > 0$ in the circuit shown below as shown in fig	10

Paper Id: 130323

_							
Roll No:							

d.	Explain Maximum Power Transfer Theorem related to AC Circuits.	10
e.	Calculate the inverse Laplace Transform h(t) of given transfer function	10
	$H(s) = \frac{s^2 + 5s - 9}{(s+1)(s^2 - 2s + 10)}$	

SECTION C

3.	Attempt any one part of the following:	$(10 \times 1 = 10)$
٥.	recempt any one part of the following.	(101 10)

Qno.	Question	Marks
a.	A Series R-L circuit has constant voltage V applied at $t=0$. At what time does $V_R=V_L$ happens.	10
b.	A periodic waveform whose one period is shown in fig. Determine the trigonometric Fourier series coefficients.	10
	x(t)	

4. Attempt any *one* part of the following:

/ 4	•			A \
71	41	- 1/2	[=1]	411
		_	_	

Qno.	Question	Marks
a.	Calculate the Inverse Laplace Transform using Convolution Integral.	10
	$\Gamma(z)$ 1	
	$F(s) = \frac{1}{(s+a)(s+b)}$	
b.	For the Continuous time periodic signal	10
	$\mathbf{x}(t) = 1 + \cos\frac{2\pi}{3}t + 4\cos\frac{5\pi}{3}t$	
	Determine the Fundamental frequency w ₀ & exponential Fourier series coefficients.	

5. Attempt any *one* part of the following:

(1)	() × (=	U)
-----	--------	---	----

Qno.	Question	Marks
a.	For the given circuit in fig, the value of given voltage V _O across 40hm resistance.	10
	$2k\Omega$ \geqslant $3k\Omega$ \uparrow $4I_0$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

b.	cos (v. t		10
	Calculate the Fourier transform of	.Also Sketch its spectrum.	

Attempt any *one* part of the following: $(10 \times 1 = 10)$ **6.** Question Qno. Marks Calculate the Short Circuit Admittance Parameter of the given circuit in fig 10 a. 2Ω 1Ω 1Ω 2Ω $\frac{1}{2}\Omega$ 1Ω Prove that for a symmetric network $Z_{11}=Z_{22}$, where Z_{11} & Z_{22} are Z_{11} b. 10 parameters.

7.	Attempt any <i>one</i> part of the following: (10)	×1=10)
Qno.	Question	Marks
a.	Calculate the impedance $Z(s)$, if Driving point impedance $Z(s)$, of a network has pole-zero location as shown in fig . Also $Z(0)=3$	10
	jo	
b.	A Practical DC Current source provides 20kW to a 50 load & 20kW to a 200 load. Calculate the maximum power that can draw from it.	10
	05-Jan-20	