\square

B.TECH
 (SEM-III) THEORY EXAMINATION 2019-20
 NETWORK ANALYSIS \& SYNTHESIS

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
SECTION A

1. Attempt all questions in brief. $\quad \mathbf{2 \times 1 0}=\mathbf{2 0}$

Qno.	Question	Marks
a.	Explain the concept of Complex Frequency.	2
b.	Define "Transfer function" of a network.	2
c.	State two properties of the R-C driving point Impedance function.	2
d.	Find the Laplace transform of $x(t)=e^{-a t} \sin \omega_{o} t$	2
e.	Find Current in 10ohm resistor as shown in fig:	2
f.	Draw the Dual Circuit of Parallel RLC circuit with Current Source.	
g .	What are the Dependent \& Independent terms in the Z- parameter?	
h.	State Compensation Theorem.	29
i.	Give examples of Active \& Passive elements in a Network.	2
j.	Draw the Frequency Resonance Curve of Parallel Resonance R-L-C	2

SECTION B

2. Attempt any three of the following:

| Qno. | Question | | Marks |
| :--- | :--- | :--- | :--- | :--- |
| a. | Find Y and Z parameters of the networks as shown in fig | 10 | |

\square

d.	Explain Maximum Power Transfer Theorem related to AC Circuits.	10
e.	Calculate the inverse Laplace Transform $\mathrm{h}(\mathrm{t})$ of given transfer function	10
	$H(s)=\frac{s^{2}+5 s-9}{(s+1)\left(s^{2}-2 s+10\right)}$	

SECTION C

3. Attempt any one part of the following:
$(10 \times 1=10)$

Qno.	Question	Marks
a.	A Series R-L circuit has constant voltage V applied at $\mathrm{t}=0$. At what time does $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{L}}$ happens.	10
b.	A periodic waveform whose one period is shown in fig. Determine the trigonometric Fourier series coefficients.	10

4. Attempt any one part of the following:

Qno.	Question	Calculate the Inverse Laplace Transform using Convolution Integral.
a.	$F(s)=\frac{1}{(\mathrm{~s}+\mathrm{a})(\mathrm{s}+\mathrm{b})}$	
b.	For the Continuous time periodic signal $\mathbf{x}(\mathrm{t})=\mathbf{l}+\cos \frac{2 \pi}{3} \boldsymbol{t}+\mathbf{4} \boldsymbol{\operatorname { c o s } \frac { 5 \pi } { 3 } \boldsymbol { t }}$	
Determine the Fundamental frequency wo \& exponential Fourier series co- efficients.	10	

5. Attempt any one part of the following:
$(10 \times 1=10)$

Qno.	Question	Marks
a.	For the given circuit in fig, the value of given voltage V_{O} across 40 hm resistance.	10

\square

b.	Calculate the Fourier transform of $\cos \omega_{o} t \quad$ Also Sketch its spectrum.	10

6. Attempt any one part of the following:
$(10 \times 1=10)$

7. Attempt any one part of the following:
$(10 \times 1=10)$

| Qno. | Question | |
| :--- | :--- | :--- | :--- |
| a. | Calculate the impedance Z(s),if Driving point impedance Z(s),of a network
 has pole-zero location as shown in fig. Atso Z(0)=3 | Marks |

