Sub Code: NAS301

Roll No:

B. TECH

(SEM III) THEORY EXAMINATION 2019-20 ENGINEERING MATHEMATICS-III

Time: 3 Hours

Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably. SECTION A

1. Attempt *all* questions in brief.

 $2 \times 10 = 20$

10x3=30

a.	State Cauchy's integral formula for the nth derivative of an analytic function.
b.	Evaluate $\oint \frac{z}{z+1} dz$ along the curve C: $ z = 2$.
c.	Find the Fourier transform of $e^{- x }$
d.	Find the Z transform of a^n , $n \ge 0$.
e.	How can we measure Kurtosis?
f.	Write the formula for rank correlation.
g.	Prove that $E = 1 + \Delta$.
h.	Write Newton's backward interpolation formula.
i.	Write Trapezoidal rule.
j.	Describe Picard's method for solving differential equation.

SECTION B

2. Attempt any *three* of the following:

a.	Given the function $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, $z \neq 0$ and $f(0) = 0$, show that the Cauchy-
	Riemann equations are satisfied at the origin, yet $f'(0)$ does not exist.
b.	Apply appropriate Fourier transform to solve the partial differential equation
	$\frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2}; x > 0, t > 0 \text{ subject to } (i)V_x(0,t) = 0 (ii) V(x,0) = \begin{cases} x, 0 \le x \le 1\\ 0, x > 1 \end{cases} \text{ (iii) } V(x,t)$
	be bounded.
c.	If 10 coins are tossed simultaneously and probability of occurrence of head in each
	of them is .6 then what is the expected number and variance of occurrence of heads
	and probability of number of heads appears on at least 8 coins.
d.	Using Lagrange's interpolation formula find $y(10)$ from the following table:
	x: 5 6 9 11
	y: 12 13 14 16
e.	Find $\int_0^6 \frac{e^x}{1+x} dx$ approximately using Simpson's 3/8 rule on integration.

SECTION C

3. Attempt any *one* part of the following:

10x1=10

a.	Find the Laurent's expansion of function $f(z) = \frac{7z-2}{z^3-z^2-2z}$ in the regions given by:
	(i) $1 < z+1 < 3$ (ii) $ z+1 > 3$
b.	Apply Calculus of residues to prove that $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+a^2)(x^2+b^2)} dx = \frac{\pi}{a+b} (a > 0, b > 0)$

H

Printed Page 1 of 2 Paper Id: 199330

a.	Using Newton Raphson method, find the real root of the equation $3x = cosx + 1$ up							
	to four deci	imal place	s.				~	\mathcal{I}
b.	Following are the marks obtained by 492 candidates in a certain examination:							
	Marks :	0-40	40-45	45-50	50-55	55-60	60-65	
	No. of candidates	210	43	54	74	32	79	
	Find out th	e number	of candida	ates who s	ecured (i)	More than	1 48 but no	ot more than
	50 marks. (ii) Less th	an 48 but i	not less that	an 45 mark			

7. Attempt any *one* part of the following:

10x1=10

a.	Solve the following system of linear equations using Gauss-Seidel method					
	l0x + 3y + 7z = 41; 3x + 20y + l7z = 101; x + 19y + 23z = 201,					
	Perform three iterations.					
b.	Using the fourth order Runge-Kutta method, solve the initial value problem					
	$\frac{dy}{dx} = -2xy^2$; $y(0) = 1$ at $x = 0.2$ with $h = 0.1$ on the interval [0, 0.3].					