\square

B. TECH
 (SEM III) THEORY EXAMINATION 2019-20 ENGINEERING MATHEMATICS-III

Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

a.	State Cauchy's integral formula for the nth derivative of an analytic function.
b.	Evaluate $\oint \frac{\mathrm{z}}{\mathrm{z}+1}$ dz along the curve $\mathrm{C}:\|\mathrm{z}\|=2$.
c.	Find the Fourier transform of $\mathrm{e}^{-\mid \mathrm{xx}}$
d.	Find the Z transform of $\mathrm{a} \mathrm{n}, \mathrm{n} \geq 0$.
e.	How can we measure Kurtosis?
f.	Write the formula for rank correlation.
g.	Prove that $\mathrm{E}=1+\Delta$.
h.	Write Newton's backward interpolation formula.
i.	Write Trapezoidal rule.
j.	Describe Picard's method for solving differential equation.

SECTION B

2. Attempt any three of the following:

10x3=30

SECTION C

3. Attempt any one part of the following:
$10 x 1=10$
a. Find the Laurent's expansion of function $f(z)=\frac{7 \mathrm{z}-2}{\mathrm{z}^{3}-\mathrm{z}^{2}-2 \mathrm{z}}$ in the regions given by:
(i) $1<|z+1|<3$
(ii) $|z+1|>3$
b. Apply Calculus of residues to prove that $\int_{-\infty}^{\infty} \frac{\mathrm{x}^{2}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)\left(\mathrm{x}^{2}+\mathrm{b}^{2}\right)} \mathrm{dx}=\frac{\pi}{\mathrm{a}+\mathrm{b}}(\mathrm{a}>0, b>0)$
4. Attempt any one part of the following:

a.	Find the Fourier transform of $F(x)=\left\{\begin{array}{cc}1-x^{2}, \text { if }\|x\|<1 \\ 0, & \text { if }\|x\|>1\end{array}\right\}$
and use it to evaluate $\int_{0}^{\infty}\left(\frac{x \cos x-\sin x}{x^{3}}\right) \cos \frac{x}{2} d x$.	

5. Attempt any one part of the following:
$10 \times 1=10$

6. Attempt any one part of the following:
$10 \times 1=10$

a.	Using Newton Raphson method, find the real root of the equation $3 x=\cos x+1$ up to four decimal places.						
b.	Following are the marks obtained by 492 candidates in a certain examination:						
	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { candidates } \end{array}$	210	43	54	74	32	79

Find out the number of candidates who secured (i) More than 48 but not more than 50 marks. (ii) Less than 48 but not less than 45 marks.
7. Attempt any one part of the following:

a.	Solve the following system of linear equations using Gauss-Seidel method $l 0 x+3 y+7 z=41 ; 3 x+20 y+l 7 z=101 ; x+19 y+23 z=201$, Perform three iterations.
b.	Using the fourth order Runge-Kutta method, solve the initial value problem $\frac{d y}{d x}=-2 x y^{2} ; y(0)=1$ at $x=0.2$ with $\mathrm{h}=0.1$ on the interval $[0,0.3]$.

