Roll No: \square

B. TECH
 (SEM-III) THEORY EXAMINATION 2019-20
 MATHEMATICS-IV

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

$2 \times 10=20$

Q no.	Question	Marks	CO
a.	Solve the following partial differential equation $y q-x p=z$.	2	1
b.	Solve the Cauchy's problem $u_{x}-u_{y}=0 . u(x, 0)=x$	2	1
c.	Classify the following equation. $x^{2} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial t^{2}}=u$	2	2
d.	Solve the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}=0$.	2	2
e.	Find the median of $6,8,9,10,11,12.13$.	2	3
f.	The first three central moments of a distribution are $0,15,-31$. Find the moment of coefficient of skewness.	2	3
g .	If the p.m.f of a discrete random variable X is Determine $E(X)$ and $V(X)$.	2	4
h.	The probability density function $f(x)$ of a continuous random variable X is defined by $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{A}{x^{2}}, & 5 \leq \mathrm{x} \leq 10 \\ 0, & \text { otherwise }\end{cases}$ Find the value of A.	2	4
i.	Find the mean of the Binomial Distribution $\mathrm{B}\left(4, \frac{1}{3}\right)$.	2	4
j.	A machine which produces mica insulating washers for use in electric device to turn out washers having a thickness of 10 mm . A sample of 10 washers hasan average thickness 9.52 mm with a standard deviation of 0.6 mm . Find out t .	2	5

SECTION B

2. Attempt any three of the following:

$\mathbf{3 \times 1 0}=\mathbf{3 0}$

Q no.	Question	Marks	CO
a.	Solve $\left(D^{2}-D D^{\prime}-2 D^{\prime 2}\right) z=(y-1) e^{x}$	10	1
b.	A rectangular plate with insulated surface is 10 cm wide and so long compared to its width that it may be considered infinite in length without introducing an appreciable error. If the temperature along the short edge $\mathrm{y}=0$ is given by: $\mathrm{u}(\mathrm{x}, 0)==$$20 \mathrm{x} 0 \leq \mathrm{x} \leq 5$ $20(10-\mathrm{x}) 5<\mathrm{x}<10$ While the two edges $\mathrm{x}=0$ and $\mathrm{x}=10$ as well as the other short edge are kept at $0^{\circ} \mathrm{C}$. Find the steady state temperature at any point (x, y) of the plate.	2	

Roll No: \square

3. Attempt any one part of the following:

$1 \times 10=10$

Q no.	Question	Marks	CO
a.	Solve $(D+1)\left(D+D^{\prime}-1\right) z=\sin (2 x+3 y)$	10	1
b.	In a partial destroyed laboratory record of an analysis of correlation data, the following result only are legible : Variance of $\mathrm{x}=9$	10	3
Regression equation: $8 \mathrm{x}-10 \mathrm{y}+66=0,40 \mathrm{x}-18 \mathrm{y}=214$. What were (a) the mean value of x and y (b) the standard deviation of y and the co-efficient of correlation between x and y ?			

4. Attempt any one part of the following:

$1 \times 10=10$

Q no.	Question	Marks	CO		
a.	Solve $x^{2} \frac{\partial^{2} z}{\partial x^{2}}-4 y^{2} \frac{\partial^{2} z}{\partial y^{2}}-4 y \frac{\partial z}{\partial y}-z=x^{2} y^{2} \log y$			$) 10$	1
:---					
b.					
A tightly stretched string with fixed end points $\mathrm{x}=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3} \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$.					

5. Attempt any one part of the following:

$1 \times 10=10$

Q no.	Question	Marks	CO
a.	An insulated rod of length l itsends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until the steady state condition prevails. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, Find the temperature at a distance x from A at time t.	2	

Roll No: \square

| b. | Find the multiple regression equation of X_{1} on X_{2} and X_{3} from the data
 Given below:
 X_{1} 3 5 6 8 12 10
 X_{2} 10 10 5 7 5 2
 X_{3} 20 25 15 16 15 2
 10 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6. Attempt any one part of the following:
$1 \times 10=10$

Q no.	Question	Marks	CO
a.	State the Bayes' theorem. The probability that a civilian can hit a target is $\frac{2}{5}$ and the probability that an army officer can hit the same target is $\frac{3}{5}$ While the civilian canfire 8 shots in the time, the army officer fires 10 shots. If they fire together, then what is the probability that army officer shoots the target?	10	4
b.	Define the Normal distribution. The daily wages of 1000 workers are distributed around a mean of Rs. 140 and with a standard deviation of Rs. 10. Estimate the number of workers whose daily waged will be (i) between Rs. 140 and Rs. 144, (ii) less than Rs. 126 (iii) more than Rs. 160.	10	4

7. Attempt any one part of the following:

$$
1 \times 10=10
$$

