

	Printed Page: 1 of 2												
	Subject Code: KME302							302					
Roll No:													

B.TECH. (SEM III) THEORY EXAMINATION 2020-21 FLUID MECHANICS & FLUID MACHINES

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Atten	npt <i>all</i> questions in brief. 2 x 10= 20			
	a.	Define viscosity and give its unit.			
	b.	Define compressibility. How it is related to bulk modulus?			
	c.	Write down only the condition for stability of floating body by mentioning			
		relative positions of M and G.			
	d.	Define Froude number and weber number.			
	e. At what distance r from the center of a pipe of radius R doe				
		velocity occur in laminar flow?			
	f.	Differentiate between laminar, turbulent and transient flow.			
	g.	What do you mean by Equipotential line?			
	h.	Write the difference between Eulerian and Lagrangian approach.			
	i.	What will be the total % of work saved by fitting the air vessel? Explain.			
	j.	What is the purpose of priming in a centrifugal pump?			

SECTION B

2	Attempt any	throo	of tha	following:
4.	Attempt any	ınree	or the	10110WIII2:

 $10 \times 3 = 30$

a.	The velocity distribution in the pipeline is given by the relation $u=2y-y^2$					
	Where u denotes the velocity at a distance y from the solid boundary. Calculate					
	(i) Shear stress at the wall,					
	(ii) Shear stress at 0.5 cm from the wall and					
	(iii) Total resistance for a 2 cm diameter pipe over a length of 100 m.					
	Assume coefficient of viscosity 0.4 poise.					
b.	Drive the continuity equation for steady Irrotational flows in Cartesian co-					
	ordinate for incompressible fluids.					
c.	With the help of diagram explain streamline, equipotential lines and flownet.					
	Prove that equipotential line and streamline intersect each other orthogonally.					
d.	A Kaplan turbine runner is to be designed to develop 9100 kw. The net					
	available head is 5.6 m. If the speed ratio = 2.09, flow ratio = 0.68 overall					
	efficiency 86% and the diameter of the boss is 1/3 the diameter of runner. Find					
	the diameter of runner, its speed and specific speed of turbine.					
e.	Define specific speed of centrifugal pump and derive the expression for it.					

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a)	Write about Venturimeter. Derive the expression for rate of flow of fluid
	through Venturimeter.
(b)	A pipeline conducts water from a reservoir to a power house, the elevation of
	which is 200 m lower than that of surface of reservoir. The water is discharged
	through a nozzle with a jet velocity of 60 m/s and at nozzle exit the jet has a
	diameter of 20 cm. Make calculation for the power of jet and the power lost in
	friction between the reservoir and jet.

(i)

(ii)

Printed Page: 2 of 2 Subject Code: KME302 Roll No:

Atte	mpt any <i>one</i> part of the following: $10 \times 1 = 10$					
(a)	The velocity component in a two dimensional incompressible flow field an	re				
	expressed as $u = y^{3}/3 + 2x - x^{2}y$; $v = xy^{2} - 2y - x^{3}/3$					
	(i) Determine the velocity and acceleration at point (1, 3)					
	(ii) Is the flow physically possible? If so obtain an expression for the	ıe				
	stream function.					
(b)	The resulting force F of a supersonic plane during flight can be considered a					
	dependent upon the length of the aircraft l, velocity V, air viscosity μ , a					
	density ρ , and bulk modulus of air K. Express the functional relationship	ip				
	between these variables and the resisting force.					
	mpt any <i>one</i> part of the following: $10 \times 1 = 10$					
(a)	Determine the displacement thickness, momentum thickness and shape factor	or				
	of the following velocity profiles in the boundary layer on a flat plate.					
	$u/U_0 = (y/\delta)^{1/m}$					
	where u is the velocity at a height y above the surface and U ₀ is the free					
	stream velocity.					
(b)	Describe the phenomenon of boundary layer separation.					
Atte	mpt any <i>one</i> part of the following: $10 \times 1 = 10$					
(a)	A Pelton turbine running at 720 rpm uses 300 kg of water per second. If the					
	head available is 425 m determine the hydraulic efficiency. The bucket deflect					
	the jet by 165° . Also find the diameter of the runner and jet. Assume $Cv = 0.9$)7				
	and $\varphi = 0.46$, Blade velocity coefficient is 0.9.					
(b)	With the help of neat sketch explain the working of Francis turbine.	<i>,</i> •				
Atte	mpt any <i>one</i> part of the following: $10 \times 1 = 10$	0				
(a)	A single acting reciprocating pump run at 50 rpm delivers 0.01 m ³ /s of wate					
	The diameter of the piston is 200 mm and stroke length 400mm. Determine the	e				
	(i) Theoretical discharge of the pump					
	(ii) Coefficient of discharge					
	(iii) Slip and percentage slip of the pump.					
(b)	Explain the following					

Function of volute casing and diffuser of a centrifugal pump.

22.Mai.2021

Cavitation in centrifugal pump.