

									Pri	ntec	l Pa	ge: 1	of 3	
								Sub	ject	Coc	le: ŀ	KEC.	303	
Roll No:	Subject Code: KEC30													

B TECH (SEM-III) THEORY EXAMINATION 2020-21 NETWORK ANALYSIS AND SYNTHESIS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

_	SECTION A	• 40	••
1.	Attempt all questions in brief.	2 x 10	
Q no.	Question	Marks	СО
a.	Describe the following terms: Tree, Co-Tree, Twig and link.	2	1
b.	Find the current <i>I</i> in the circuit shown in the Figure 1.	2	1
	$ \begin{array}{c c} 4\Omega & I \\ \hline 6\Omega \\ \hline \end{array} $ Figure 1		
c.	Describe and state Superposition theorem with suitable example.	2	2
d.	Find Thevenin voltage across terminals a and b of the circuit shown in the	2	2
	Figure 2. $\begin{array}{c c} 5\Omega \\ \hline \\ b \\ \hline \\ \hline \\ Figure 2 \end{array}$	^{نې}	2
e.	Illustrate why we use Fourier Transform and what is the drawback of Fourier Transform.	2	3
f.	Demonstrate time reversal property of Fourier transform.	2	3
g.	Describe the Singularity function with suitable example.	2	4
h.	Demonstrate time shifting property of Laplace transform.	2	4
i.	Describe the Band pass filter with suitable example.	2	5
j.	Illustrate the Impedance parameter of a two-port network.	2	5

SECTIONE

	SECTION B						
2.	2. Attempt any <i>three</i> of the following:						
Q no.	Question	Marks	CO				
a.	Identify the node voltages in the circuit shown in Figure 3.	10	1				
	$ \begin{array}{c c} & 5A \\ \hline & 4\Omega \\ \hline & 2\Omega \\ \hline & 6\Omega \\ \hline & 10A \\ \end{array} $ Figure 3						

Printed Page: 2 of 3 Subject Code: KEC303

Roll No:

b.	Find the Norton equivalent circuit of the circuit in Figure 4.	10	2
	8 Ω		
	$\geqslant 4\Omega$		
	2 A \$ 5 Ω		
	12 V		
	8Ω		
	Figure 4	10	3
c.	Describe the Fourier series of the waveform shown in Figure 5.	10	3
	$f(t) \blacktriangle$		
	J(J) ↑		
	-2 -1 0 1 2 3 t		
	Figure 5		
d.	Find the Laplace transform for the given signal.	10	4
	$a(t) = at_{x}(t) + at_{y}(t)$		
	$x(t) = e^{at}u(t) * e^{at}u(t)$		
	where * represents the time convolution.		Nil
			/
e.	Find the transmission parameters for the two-port network in Figure 6.	10	5
	\mathbf{I}_1 100 $\mathbf{3I}_1$ \mathbf{I}_2	.5	
	$ \begin{array}{c c} & 10 \Omega \\ \hline & 10 \Omega \end{array} $		
	§ 20 Ω		
	7		
	Figure 6		

	SECTION C		
3.	Attempt any <i>one</i> part of the following:		
a.	For the circuit in Figure 7, find the branch currents I_1 , I_2 , and I_3 using mesh analysis. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1
1.		10	1
b.	Describe the following terms with example.	10	1
	i. Junction Point		

PAPER ID-311220

Roll No: Subject Code: KEC303

Printed Page: 3 of 3

ii.	Node	
iii.	Branch	
iv.	Active and Passive Network	
v.	Linear and Non-Linear Network	

4. Attempt any *one* part of the following:

<u> 7. </u>	Attempt any one part of the following.		
a.	Find the Thevenin equivalent circuit of the circuit shown in Figure 8, to	10	2
	the left of the terminals <i>a-b</i> .		
	4Ω 1Ω a		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	$32 \text{ V} \stackrel{\text{\tiny (1)}}{=} 12 \Omega \geqslant \text{\tiny (1)} 2 \text{ A} \geqslant \text{\tiny (2)} R_L$		
	D		
	Figure 8		
b.	Use the superposition theorem to find v in the circuit in Figure 9.	10	2
	8 Ω		
	<u> </u>		
	$6V \stackrel{(\pm)}{=} 4\Omega \ge v \stackrel{(\bullet)}{=} 3A$		
	T 1- T		
	Figure 9		
	1 igaic 7	l	

5. Attempt any *one* part of the following:

J.	Attempt any one part of the following.	
a.	Find out the Fourier Transform for the Gate function (Rectangular pulse). Also 10	3
	draw the magnitude spectrum of the output.	
b.	Demonstrate time convolution and time scaling property of Fourier transform. 10	3
	Also mention their significance.	

6. Attempt any *one* part of the following:

a.	Find the Laplace transform for the given signal and calculate the ROC.	10	4
	$x(t) = t^2 e^{-3t} u(t)$		
b.	Derive the expression for source free RLC circuit and discuss all three cases:	10	4
	Overdamped response, Underdamped response, and critical damped response.		
	- · · · · · · · · · · · · · · · · · · ·		
	Č V		

7. Attempt any *one* part of the following:

a.	Illustrate the high pass filter. Derive the expression for transfer function of a	10	5
	high pass filter and plot the curve.		
b.	Obtain the relation for Y and H parameters of a two-port network, when Z-parameter is given.	10	5