Roll No:

\square

BTECH

(SEM III) THEORY EXAMINATION 2021-22
ENGG. MECHANICS
Time: 3 Hours
Total Marks: 100
Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-A Attempt All of the following Questions in brief	Marks (10X2=20)	CO
Q1(a)	Write down the different types of supports and loading system.	3
Q1(b)	Define work and power. Write the mathematical relation and SI unit.	4
Q1(c)	Define center of mass and write down the coordinates of center of gravity of triangle.	2
Q1(d)	What is the difference between colinear and concurrent forces?	1
Q1(e)	Write down D'Alembert's Principle.	5
Q1(f)	A body of weight 50N placed on a horizontal surface is just moved by a force of 29N. Find the frictional force and normal reaction.	1
Q1(g)	What do you understand by point of contraflexure?	3
Q1(h)	Discuss the merits and demerits of friction.	1
Q1(i)	Calculate the bending moment at centre of a simply supported beam carrying a point load.	3
Q1(j)	Two spheres of weight P and Q rest inside a hollow cylinder which is resting on a horizontal force. Draw the free body diagram of both the spheres, together and separately.	1

SECTI	ION-B Attempt ANY THREE of the following Questions ${ }^{\text {a }}$ Marks ($\mathbf{3 X 1 0}=\mathbf{3 0}$)	
Q2(a)	Two channels are kept as shown in given figure, at a distance d between them to form the cross section of a column. Find the value of the distance d ' if the centroidal moment of inertia I_{x} and I_{y} of the area are equal.	2
Q2(b)	A uniform rod 4 m long weighing 400 N is rigidly connected to the centre of a cylinder of mass 30 kg , as shown in given figure.The diameter of cylinder is 2 m . Find the linear acceleration of block weighing 2000 N connected to the cylinder by an inextensible string.	5
Q2(c)	Explain the principle of virtual work. A simply supported beam $A B$ of span 5 m is loaded as shown in given figure, Using the principle of virtual work, find the reactions at A and B.	3
Q2(d)	State and prove Lami's theorem. Two spheres, A and B, are resting in a smooth through as shown in given figure. Draw the free body diagrams of A and B showing all the forces acting on them, both in magnitude and direction. Radius of spheres A and B are 250 mm and 200 mm , respectively.	1

Roll No: \square

BTECH

(SEM III) THEORY EXAMINATION 2021-22

ENGG. MECHANICS

Q2(e)	Differentiate between rectilinear and curvilinear motion. Also derive the expression for the Horizontal Range, Time of flight and maximum height of a projectile with initial velocity ' u ' and inclined at an angle " α " with the horizontal.	4

SECTION-C Attempt ANY ONE following Question

Q3(a)	A ladder of length 4 m weighing 200 N is placed
against a vertical wall, as shown in given figure. The	
coefficient of friction between the wall and the ladder	
is 0.2 and that between the ladder and the floor is 0.3 .	
The ladder in addition to its own weight has to support	
a man weighing 600 N at a distance of 3 m from A .	
Calculate the minimum horizontal force to be applied	
at A to prevent slipping.	

Q3(b)
Define the centre of gravity and centroid.
Find the centroid of the shaded area in given figure

Roll No: \square

BTECH

(SEM III) THEORY EXAMINATION 2021-22

ENGG. MECHANICS

SECTI	ION-C Attempt ANY ONE following Question \quad Marks (1X10=10)	C
Q6(a)	Derive an equation for moment of inertia of triangle centroidal axis and about its base.	2
Q6(b)	Find the moment of inertia of shaded area shown in given figure, about $\mathrm{x}-\mathrm{x}$ axis and y - y axis.	2
SECTION-C Attempt ANY ONE following Question ${ }^{\text {S }}$ (1X10		CO
Q7(a)	Two bodies A and B of mass 80 kg and 20 kg are connected by a thread and move along a rough horizontal plane under the action of a force 400 N applied to the first body of mass 80 kg as shown in given figure. The coefficient of friction between the sliding surfaces of the bodies and the plane is 0.3 . Determine the acceleration of the two bodies and the tension in the thread, using D' Alembert's principle.	5
Q7(b)	The crank BC of a slider crank mechanism is rotating at constant speed of 30 rpm , as shown in given figure clockwise. Determine the velocity of the crosshead A at the given instant.	5

