Note: Attempt all Sections. If require any missing data; then choose suitably.

## SECTION A

1. Attempt all questions in brief.

| a. | Describe briefly the floating-point representation of numbers. |
| :--- | :--- |
| b. | Suppose 1.212 is used as an approximation to $\sqrt{ }$ 2. Find the absolute and relative errors. |
| c. | Differentiate between ill conditioned and well-conditioned methods |
| d. | Explain underflow and overflow conditions of error in floating point's addition and <br> subtraction. |
| e. | Write difference between the truncation error and round off error. |
| f. | Differentiate false position method and secant method. |
| g. | How can the rate of convergence of two methods be compared, explain by taking an <br> example? |
| h. | Write down algorithm for secant method. |
| i. | Discuss the significant digits with suitable example. |
| j. | Define testing of Statistical hypothesis. |

## SECTION B

2. Attempt any three of the following:
$10 \times 3=30$

| a. | Write down the computer algorithms of least square curve fitting. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b. | Prove that Newton-Raphson method is quadratic convergent. |  |  |  |  |  |
| c. | Solve the following questions by relaxations method- |  |  |  |  |  |
| d. | The theory predicts the proportion of beans in the four groups $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D should be in the ratio 9:3:3:1. In an experiment with 1600 beans, the numbers in the four groups were $882,313,287$ and 118 . Does the experimental result support the theory? |  |  |  |  |  |
| e. | A cromel-alumel thermocouple gives the following output for rise in temperature: |  |  |  |  |  |

## SECTIONC

3. Attempt any one part of the following:
a. In some determination of the value vof $\mathrm{CO}_{2}$ dissolved in water in given volume of water at different temperatures, the values to be obtained by method of least square, a relation of form $v=a+b \theta$ which fits to the observations.

| $\Theta$ | 0 | 5 | 10 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| v | 1.8 | 1.45 | 1.18 | 1.0 |

b. Use bisection method to find the root of the equation $x^{3}-1.8 x^{2}-10 x+17=0$ that lies between the interval $(1,2)$ at the end of fifth iteration.
4. Attempt any one part of the following: $\quad 10 \times 1=10$

| a. | Explain Gram-schmidt orthogonalizing process to obtain orthogonal <br> polynomials. |
| :---: | :--- |
| b. | State Chebyshev polynomial and their properties. |

$\square$
5. Attempt any one part of the following:

10x1=10

| a. | Evaluate the integral $\mathrm{I}=\mathrm{dx} /(\mathrm{x} 2+1)$ in the interval[0,1] using the Lobatto and Radau3 <br> point formula. |
| :---: | :--- |
| b. | Find a real root of the equation 2x-log 10x-7c, correct to three decimal places using <br> Aitken's method and iteration method. Also show how the rate of convergence of <br> Aitken's method is rapid than iteration method, |

6. Attempt any one part of the following:
a. $\quad$ Solve the following system of equation by Gauss elimination method:

$$
\mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}+4 \mathrm{x}_{4}=10 \quad 7 \mathrm{x}_{1}+10 \mathrm{x}_{2}+5 \mathrm{x}_{3}+2 \mathrm{x}_{4}=40
$$

$13 x_{1}+6 x_{2}+2 x_{3}-3 x_{4}=64 \quad 11 x_{1}+13 x_{2}+8 x_{3}-x_{4}=64$
b. Fit a natural cubic Spline to every subinterval for following data:

| $X$ | 0 | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: | :---: |
| $Y$ | 2 | -6 | -8 | 2 |
|  | Here computer | $: y(2.5)$ |  |  |

7. Attempt any one part of the following:

| a. | Add the following Floating-point numbers. <br> i) 0.3879 E 7 and 0.813 E 7 <br> ii) 723.813 E 14 and 89.73 E12 <br> iii) 100.312 E 25 and 81.813 E 27 |  |
| :---: | :---: | :---: |
| b. | With the help of Gauss elimination method find the solution. $2 x+y+z=10 \quad 3 x+2 y+3 z=18 \quad x+4 y+9 z=16$ |  |

