Roll No:

\square

BTECH

(SEM III) THEORY EXAMINATION 2021-22
DATA STRUCTURE

Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably. SECTION A

1. Attempt all questions in brief. $\quad \mathbf{2 X 1 0}=\mathbf{2 0}$

Q No	Questions	CO
(a)	Convert the infix expression (A+B) *(C-D) \$E*F to postfix. Give the answer without any spaces.	1
(b)	Rank the following typical bounds in increasing order of growth rate: $\mathrm{O}(\log n), \mathrm{O}\left(\mathrm{n}^{4}\right), \mathrm{O}(1), \mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$	2
(c)	Draw the binary search tree that results from inserting the following numbers in sequence starting with 11 : $11,47,81,9,61,10,12,$	3
(d)	What does the following recursive function do for a given Linked List with first node as head? void fun1(struct node* head) \{ if(head $==$ NULL) return; fun1(head->next); printf("\%d ", head->data); \}	4
(e)	Define a sparse matrix. Suggest a space efficient representation for space matrices.	5
(f)	List the advantages of doubly linked list over single linked list.	1
(g)	Give example of one each stable and unstable sorting techniques.	
(h)	Write advantages of AVL tree over Binary Search Tree (BST)	3
(i)	What is tail recursion? Explain with a suitable example.	4
(j)	Write different representations of graphs in the memory.	5

SECTION B
2. Attempt any three of the following: $\quad 10 \times 3=30$

Q No	Questions	CO
(a)	Write advantages and disadvantages of linked list over arrays. Write a 'C' function creating new linear linked list by selecting alternate elements of a linear linked list.	$\mathbf{1}$
(b)	Write algorithms of insertion sort. Implement the same on the following numbers; also calculate its time complexity. 13, 16, 10, 11, 4, 12,6,7	$\mathbf{2}$
(c)	Differentiate between DFS and BFS. Draw the breadth First Tree for the above graph.	$\mathbf{3}$
(d)	Differentiate between liner and binary search algorithm. Write a recursive function to implement binary search.	$\mathbf{4}$
(e)	What is the significance of maintaining threads in Binary Search Tree? Write an algorithm to insert a node in thread binary tree.	$\mathbf{5}$

SECTION C

3. Attempt any one part of the following:

Q No	Questions	CO
(a)	Suppose a three dimensional array A is declared using A[1:10, -5:5, -10:5) (i) Find the length of each dimension and the number of elements in A (ii) Explain Row major order and Column Major Order in detail with explanation formula expression.	1

Roll No:

\square

BTECH

(SEM III) THEORY EXAMINATION 2021-22

DATA STRUCTURE

4.

Attempt any one part of the following: $10 \times 1=10$

Q No	Questions	CO
(a)	(i) Use the merge sort algorithm to sort the following elements in ascending order. $13,16,10,11,4,12,6,7$ What is the time and space complexity of merge sort? (ii) Use quick sort algorithm to sort $15,22,30,10,15,64,1,3,9,2$. Is it a stable sorting algorithm? Justify.	2
(b)	(i) The keys $12,17,13,2,5,43,5$ and 15 are inserted into an initially empty hash table of length 15 using open addressing with hash function $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 10$ and linear probing. What is the resultant hash table? (ii) Differentiae between linear and quadratic probing techniques.	2

6.

Attempt any one part of the following:

| Q No | Questions | CO |
| :--- | :--- | :--- | :--- |
| (a) | (i) Write an iterative function to search a key in Binary Search Tree (BST).
 (ii) Discuss disadvantages of recursion with some suitable example. | 4 |
| (b) | (i) What is Recursion?
 (ii)Write a C program to calculate factorial of number using recursive and non-
 recursive functions. | 4 |

7. Attempt any one part of the following:

$$
10 \times 1=10
$$

Q No	Questions	CO		
(a)	(i) Why does time complexity of search operation in B-Tree is better than Binary Search Tree (BST)? (ii) Insert the following keys into an initially empty B-tree of order 5 a, g, f, b, k, d, h, m, j, e, s, i, r, x, c, l, n, t, u, p	5		
(iii) What will be the resultant B-Tree after deleting keys j, tand d in sequence?			\quad	(b) Design a method for keeping two stacks within a single linear array so that
:---		(i)neither stack overflow until all the memory is used. (ii) Write a C program to reverse a string using stack.		
:---				

