

				Sub	jecτ	C00	ie: I	NEC	JU9
Roll No:									

BTECH (SEM III) THEORY EXAMINATION 2021-22 DIGITAL LOGIC DESIGN

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 2

a.	Implement the following expression using NOR gates: $F(w, x, y, z) = w'x' + x'z'$
b.	Compute 9's and 10's complement of the following decimal numbers:
	i) 24,681,234
	ii) 63,325,600
c.	Construct 4 input priority encoder using combinational gates.
d.	Sketch the logic diagram of half subtractor.
e.	Explain error detecting and correcting codes.
f.	Define setup time.
g.	Illustrate Ring counter and Johnson counter.
h.	Sketch square wave output using D flip-flop.
i.	Explain shift registers.
j.	Explain primitive flow table.

SECTION B

Attempt any three of the following: 2.

a.	Solve the logic function given below, using Quine McClusky minimization
	technique and realize simplified expression using universal gates.
	$F(A, B, C, D) = \sum m(0, 1, 3, 7, 8, 9, 11, 15)$
b.	Design a 4-bit binary counter with parallel load.
c.	Explain the static RAM and dynamic RAM. Describe the PLA and its application in
	detail.
d.	Explain flow table and race conditions in asynchronous sequential circuit design.
e.	Show that the characteristic equation for the complement output of JK flip-flop is
	Q'(t+1) = J'Q' + KQ

SECTION C

Attempt any one part of the following: 3.

10x1=10

a.	Simplify the Boolean function $F(A, B, C, D)$: $\sum (1, 3, 7, 11, 12, 13)$ which has the
	don't care condition d(A, B, C, D): $\sum (0, 2, 5, 9)$ and then express the simplified
	function in sum-of-minterms form.
b.	Explain different logic gates families in digital circuits. Write a short note on
	universal gate.

4. Attempt any one part of the following:

10x1=10

a.	Draw and explain the carry look ahead adder.
b.	What is asynchronous counter? How would you design asynchronous counter?

				Sub	ject	Coc	de: l	NEC	309
Roll No:									

BTECH (SEM III) THEORY EXAMINATION 2021-22 **DIGITAL LOGIC DESIGN**

5. Attempt any one part of the following:

10x1=10

Printed Page: 2 of 2

8	a.	Explain the truth table of the SR, JK, D & T flip-flops.
ł	b.	Design a Mod 6 synchronous counter using D flip-flop and T flip-flop.

6. Attempt any one part of the following:

10x1=10

a.	Explain PLA with the help of block diagram.
b.	Design a 4-bit binary up down ripple counter, also show its clock diagram.

7. Attempt any one part of the following:

10x1=10

a.	Describe the general procedures that must be followed to ensure a race-free state
	assignment with example.
b.	Explain flow table and race conditions in asynchronous sequential circuit
	design.