Roll No: \square
BTECH
(SEM III) THEORY EXAMINATION 2021-22

DIGITAL LOGIC DESIGN

Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 7=14$

a.	Define Pair, Quad, and Octet.
b.	Describe sign magnitude representation.
c.	Compute (i) BCD, (ii) excess-3 code, (iii) 2421 code, and (iv) a 6311 code of a decimal number 4125.
d.	Explain difference between latch and flip-flop.
e.	Explain race around condition in brief.
f.	Implement the function $\mathrm{F}=\overline{\bar{A} \bar{B} C+A B C \bar{D}+\bar{A} B C D+\mathrm{AB}+\mathrm{C} \text { using PLA. }}$
g.	Compute address lines and input-output data lines are needed in 64K x 8 memory units.

SECTION B

2. Attempt any three of the following:

a.	Solve the following Boolean functions by using K-Map: $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum(0,1,4,5,6,8,9,10,12,13,14)$
b.	Explain the sequentiallogic circuits? Sketch the logic diagram of JK Flip Flop.
c.	Explain different logic gates families in digital circuits. Write a short note on Universal Gate.
d.	Write short notes on the following: i) Comparison between PROM, PLA and PAL. ii) Structure of 4-byte diode ROM.
e.	i) Design a 4-bit magnitude comparator using combinational gates. ii) Design a 4-bit priority encoder

SECTIONC

3. Attempt any one part of the following:

(a)	Solve the following logic function and realize using NOR gates. i) $F(a, b, c, d)=\prod(1,2,3,7,10,11)+D(0,15)$ ii) $F(a, b, c, d)=\prod(3,4,5,6,7,10,11,15)$
(b)	Solve the following Boolean function using tabular method (Quine Mc- Clusky method): $F(A, B, C, D, E)=\sum(0,2,4,10,15,19,23,29,31)$

4. Attempt any one part of the following:
(a) Explain address multiplexing block diagram for a 64K DRAM.
(b) Explain the hazards in combinational and sequential circuit. Also explain the remedy for eliminating a hazard.
\square

BTECH

(SEM III) THEORY EXAMINATION 2021-22

DIGITAL LOGIC DESIGN

5. Attempt any one part of the following:
$7 \times 1=7$
(a) \quad Design a Mod 6 synchronous counter using D flip-flop and T flip-flop.
(b) With the help of logic diagram, explain the 4 bit universal shift register using D flipflops and 4:1 MUX.
6. Attempt any one part of the following:
$7 \times 1=7$
(a) Design a carry look ahead 4-bit parallel adder. Show that the time for addition is independent of the length of operands.
(b) Construct 16:1 MUX using 4:1 and 2:1 multiplexers and hence analyze using truth table.
7. Attempt any one part of the following:
$7 \times 1=7$
(a) Construct a state diagram for synchronous decade UP/DOWN counter. The mode control; 'M' decides the pattern of counting operation. When M=0 Counter counts UP and when $\mathrm{M}=1$, counter counts DOWN. When counter reaches terminal count $\mathrm{Y}=1$ (for UP count) and $\mathrm{Z}=1$ (for DOWN count). Label the state diagram in M/YZ mode.
(b) Explain the static RAM and dynamic RAM. Describe the PLA and its application in detail.
