BTECH

(SEM III) THEORY EXAMINATION 2021-22 DIGITAL SYSTEM DESIGN

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all sections. If require any missing data; then choose suitably.
SECTION A

1. Attempt all questions in brief:

Qno.	Question	Marks	CO
a.	Simplify the expression F (A, B, C) = AB+BC+A' by K- Map.	2	1
b.	Discuss the concept of fan-in and fan-out?	2	3
c.	What is the role of subtractor in digital electronics?	2	3
d.	Construct half subtractor using NAND gates.	2	4
e.	Distinguish between shifter and barrel shifter?	2	3
f.	Define ASM and FSM?	2	4
g.	Why ECL is fastest logic family?	2	3
h.	What do you understand by digital TTL?	2	4
i.	List some advantages of successive approximation?	2	2
j.	Where is SAR ADC used?	2	5

SECTION B

2.	Attempt any three of the following:	$\mathbf{3 \times 1 0}=20$	
Qno.	Question	Marks	CO
a.	Write the differences between combinational and sequential circuits.	10	1
b.	Design 2-bit magnitude comparator.	10	2
c.	Explain the working of Master-Slave JK flip-flop with the help of logic diagram, functional table, logic symbol.		3
d.	i) Draw and explain block diagram of Moore model and Mealy model. ii) Write the difference between ripple counter and synchronous counter.	105	3
e.	List the guidelines for construction of state graphs.	10	4

SECTION C

3. Attempt any one part of the following:
$1 \times 10=10$

Qno.	Question	$\mathbf{1 x} 10=10$	
a.	Minimize the following Boolean function- F(A, B, C, D $)=\Sigma \mathrm{m}(0,3,4,5,7,9,13,14,15)$	10	1
b.	Expand the following into canonical form and represent in decimal form: i) f1 = a+bc+ac'd into min terms. ii) $\mathrm{f} 2=\mathrm{a}(\mathrm{b}+\mathrm{c})(\mathrm{a}+\mathrm{c}+\mathrm{d})$ into max terms	10	1
4.	Attempt any one part of the following:	$\mathbf{1 \times 1 0}=\mathbf{1 0}$	
a.	Explain the concept of serial adder with accumulators.	10	2
b.	Design a full adder by constructing the truth table and simplify the output equations.	10	2

5. Attempt any one part of the following: $\quad 1 \times 10=10$

a.	Design a mod 11 up ripple counter using T-FF.	10	3
b.	Explain positive edge triggered D-flip-flop with the help of circuit diagram and waveforms.	10	3

6. Attempt any one part of the following: $\quad 1 \times 10=10$

a.	Draw a circuit diagram of a CMOS inverter. Draw its transfer characteristics and explain its operation.	10	4
b.	With the help of a neat diagram, explain the working of a two-input TTL NAND gate.	10	4
7.	Attempt any one part of the following:	$\mathbf{1 x 1 0}=\mathbf{1 0}$	
a.	Explain single slope and dual slope ADC with a neat sketch.	10	5
b.	Describe switched capacitor and write its applications.	10	5

